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Abstract

The propagation of electroacoustic waves in a piezoelectric medium containing a statistical ensemble of cylindrical

fibers is considered. Both the matrix and the fibers consist of piezoelectric transversely isotropic material with symmetry

axis parallel to the fiber axes. Special emphasis is given on the propagation of an electroacoustic axial shear wave

polarized parallel to the axis of symmetry propagating in the direction normal to the fiber axis.

The scattering problem of one isolated continuous fiber (‘‘one-particle scattering problem’’) is considered. By means of

a Green’s function approach a system of coupled integral equations for the electroelastic field in the medium containing

a single inhomogeneity (fiber) is solved in closed form in the long-wave approximation. The total scattering cross-

section of this problem is obtained in closed form and is in accordance with the electroacoustic analogue of the optical

theorem.

The solution of the one-particle scattering problem is used to solve the homogenization problem for a random set of

fibers by means of the self-consistent scheme of effective field method. Closed form expressions for the dynamic char-

acteristics such as total cross-section, effective wave velocity and attenuation factor are obtained in the long-wave

approximation.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Piezoelectric composites are an important branch of modern engineering materials with wide appli-
cations in actuators and sensors in ‘‘smart’’ materials and structures. Combining two or more distinct
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constituents, piezoelectric composite materials can take the advantages of each constituent and have su-
perior electromechanical coupling characteristics compared to homogeneous piezoelectrical materials.
These materials have been developed in many forms including second phase piezoelectric inclusions em-
bedded in a polymer matrix and polymer filled piezoelectric inclusions in a solid piezoelectric ceramic
matrix. The secondary-phase piezoelectric inclusions in the matrix of composites can be continuous fibers,
short fibers, holes, voids or dispersed quasispherical particles. A further important application of fiber
reinforced piezocomposites is in the health monitoring of structures (Lin and Chang, 1999). More recently,
piezoelectric composites are extensively used as transducers for sonar projectors and for ultrasonic appli-
cations (Tressler and Uchino, 2000).

Among various types of piezocomposites, the fiber reinforced composites consisting of a set of parallel
continuous cylindrical rods of piezoelectric ceramic in a matrix were identified as most promising for ul-
trasonics (Tressler and Uchino, 2000). For example, composite sensors containing piezoelectric ceramic
rods in a polymer-based matrix are widely used in trandusers for underwater and biomechanical imaging
applications (Gururaja et al., 1981).

Recent developments of the micromechanical modeling of piezoelectric composites have been carried out
by many researchers. The rule of mixtures (one of the simplest schemes in the mechanics of composites) was
applied to fiber reinforced piezocomposites (Chan and Unsworth, 1989). This rule, however, may not be
fully reliable. Indeed, even in the case of purely elastic properties the rule of mixture, while accurately
predicting the effective stiffness along the fiber direction, may yield errors in other electroelastic constants if
the contrast in properties between the matrix and the fibers is substantial––such a limitation is relevant for
the ceramic–polymer composites.

Grekov et al. (1989) used a model of coaxial cylinders placed in a matrix with effective properties to
estimate the properties of a piezoelectric matrix reinforced by piezoelectric fibers. Their calculation,
however, covers only three (out of ten) effective constants.

Smith and Auld (1991) and Smith (1993) analyzed the effective properties of fiber reinforced piezo-
composites using the following assumptions: (a) in the direction along the fiber, matrix and fibers share the
same strain; (b) in the plane normal to fibers, the matrix and the fibers carry the same stresses and (c)
electrical field in the plane normal to fibers and all the shear strains are assumed to be zero. On the basis of
these assumptions, the authors obtain six (out of ten) effective constants. We note that, whereas the as-
sumption (a) is fully justified, the assumption (b) is less solid: in the mechanics of composites such as-
sumption has been shown to be generally inaccurate (Hill, 1963). Note also that the mentioned work cannot
be readily extended to the case when the matrix is piezoelectric.

Getman and Mol’kov (1992) considered a periodic arrangement of piezoelectric fibers in a piezoelectric
matrix. Their results, however, were not given in the closed form and were illustrated only for the case of
fibers with zero stiffness, conductivities and piezoelectric constants (porous piezoceramic).

Wang (1992) considered the problem of the piezoelectric material reinforced by piezoelectric fibers and
calculated the effective constants in the non-interaction approximation (low concentration of fibers). His
calculations cover seven (out of ten) effective constants.

Chen (1993) considered a fibrous piezocomposite in the very special case when the shear moduli of the
matrix and of the fibers coincide (this case may not be relevant for real piezocomposites). In this special
case, extending the ideas of Hill (1964) on the effective elastic moduli of a two phase composite, he derived
closed form expressions for the effective constants. The same problem was considered by Chen (1994),
without the assumption of equal shear moduli, in the framework of Mori-Tanaka’s method, but the set of
calculated effective constants was incomplete (seven out of ten).

The method of effective field (discussed below) was applied (Levin, 1996a, 1999; Levin et al., 1999) to the
problem of effective properties of an isotropic purely elastic (piezopassive) matrix with spheroidal piezo-
electric inhomogeneities of identical aspect ratios that are either parallel or randomly oriented (note that in
the latter case the piezoeffect is lost at the macroscale). By Levin (1996a) the transversely isotropic matrix
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reinforced by the continuous fibers was also considered. This self-consistent scheme (effective field method)
leads to explicit expressions for all ten effective piezoelectric constants, the dependence on the volume
fraction of fibers remains physically reasonable in all range of fraction changing (from 0 to 1).

All the results mentioned above are achieved in the framework of statics. It is well known (Kunin, 1983)
that even if the components of the original heterogeneous material are purely elastic, dynamic processes will
cause an effective medium with attenuation and dispersion because of wave scattering on the inclusions and
the existence in such a medium of intrinsic length parameters. All these dynamic characteristics cannot be
described appropriately in a static framework. Due to the increasing need of an understanding of dynamic
processes in piezoelectric composites, it is highly desirable to establish modelling of effective characteristics
in a fully dynamic framework. It is the goal of this paper to study some effective dynamic material char-
acteristics of a fiber reinforced piezocomposite.

The paper is organized as follows: In Section 2 we derive from the equation of motion and charge
conservation law integral equations for the scattered electroelastic fields for an isolated inhomogeneity. The
solution of this problem is crucial for solving the scattering problem of a statistical ensemble of randomly
distributed inhomogeneities. In Section 3 we consider a transversely isotropic medium containing one
isolated continuous fiber consisting of transversely isotropic piezoelectric material with different moduli
from the matrix but with coincident symmetry axis with the fiber axis. Due to the quasiplane symmetry of
the problem we introduce the electroelastic quasiplane dynamic Green’s function which is used to formulate
a set of integral equations for the scattered electroelastic fields of an isolated continuous fiber. A consid-
eration of dynamic Green’s functions for piezoelectric, thermoelastic and poroelastic infinite three di-
mensional media can be found, e.g. Norris (1994).

The ‘‘one-particle’’ scattering problem is solved for the case when the diameter of fiber is much smaller
than the wavelength of incident electroelastic field (long-wave-approximation). In this regime we solve the
integral equations and give closed form expressions for the scattered electroacoustic fields. In Section 4 we
derive for the case of an isolated fiber the total cross-section by utilizing the electroacoustic analogue of
optical theorem. To that end the farfield asymptotics of the scattered electroacoustic fields are derived. In
Section 5 the propagation of an axial shear wave on a random set of continuous fibers having identical radii
and parallel axes of symmetry is considered. The solution of the ‘‘multiple-particle’’ scattering problem is
formulated in the framework of a self-consistent scheme of integral equations (effective field method). By
introducing statistical hypotheses on the distribution of the fibers the multiple scattering problem is reduced
to an effective ‘‘one-particle’’ scattering problem. In the framework of this approach, effective electroa-
coustic fields and the dynamic electroelastic characteristics are calculated explicitly. Finally in Section 6 the
effective wave velocity and attenuation factor are calculated in explicit form.

2. Integral equations for the scattering problem

We consider a piezoelectric medium obeying the following linear constitutive equations

rij ¼ Cijklekl � ekijEk
Di ¼ eiklekl þ gikEk

ð1Þ

where r and e are the stress and strain tensors, E and D are the electric field intensity and electric dis-
placement respectively, C ¼ CE is the tensor of elastic moduli at fixed E, g ¼ ge is the permittivity tensor at
fixed strain e, e is the piezoelectric constants tensor.

The substitution of relations (1) into the equations of elastodynamics and Maxwell’s equations leads to a
coupled system of equations of linear electroelasticity. As usual, we disregard body forces of electrical
nature. Hence, the equations of motion have the same form as in the theory of elasticity

V.M. Levin et al. / International Journal of Solids and Structures 39 (2002) 5013–5051 5015



ojrij � q€uui ¼ �Qi; oj ¼ o=oxj ð2Þ

where ui is the vector of elastic displacement, q is the material’s density, Qi is the body force vector.
The solution of Eq. (2) together with Maxwell’s equations describes the elastic–electromagnetic waves,

i.e. elastic waves interacting with the electric field and the electromagnetic waves accompanying the de-
formation. If the characteristic velocity of the elastic waves is v, then the corresponding velocity of the
electromagnetic waves has the order of 105v. Therefore, we neglect the magnetic field generated by the
elastic field propagating with velocity v. It follows, then, that the magnetic effects can be neglected and
the quasistatic approximation for the electric field can be used.

An additional field equation is the conservation of free electric charges:

oiDi ¼ �q ð3Þ

where q is the density of free electric charges and Di is the electric displacement. Since

Ei ¼ �oiu; eij ¼ 1
2
ðoiuj þ ojuiÞ ð4Þ

where u is the electric potential, the constitutive equations can be rewritten in the form

rij ¼ Cijkloluk þ ekijoku

Di ¼ eikloluk � gikoku
ð5Þ

Substituting them into (2) and (3) yields a coupled system of linear differential equations of electro-
elasticity for the piezoelectric medium:

ojCijkloluk þ ojekijoku � q€uui ¼ �Qi

oieikloluk � oigikoku ¼ �q
ð6Þ

We consider now an harmonic oscillation of the medium with frequency x. Since the dependence of
quantities entering (6) on time is given by multiplier expð�ixtÞ, the system (6) takes the form

ojCijklokul þ qx2ui þ ojejikoku ¼ �Qi

oieiklokul � oigikoku ¼ �q
ð7Þ

Let the density of the body forces Qi and electric charges q be localized within a domain V. The solution
of the system (7) that vanishes at infinity can be represented as

uiðxÞ ¼
Z
V
Gikðx� x0ÞQkðx0Þdx0 þ

Z
V

Ciðx� x0Þqðx0Þdx0

uðxÞ ¼
Z
V

ckðx� x0ÞQkðx0Þdx0 þ
Z
V
gðx� x0Þqðx0Þdx0

ð8Þ

(the dependencies on frequency x are omitted). The substitution of these expressions into the left-hand
parts of (7) leads to a system of differential equations for the kernels GikðxÞ, CiðxÞ, ckðxÞ and gðxÞ––the
components of the electroelastic Green’s function:

ðCijklojok þ qx2dilÞGlmðxÞ þ ejikojokcmðxÞ ¼ �dimdðxÞ
ðCijklojok þ qx2dilÞClðxÞ þ ejikojokgðxÞ ¼ 0

eT
ikloiokGlmðxÞ � gikoiokcmðxÞ ¼ 0

eT
ikloiokClðxÞ � gikoiokgðxÞ ¼ �dðxÞ

ð9Þ

where dðxÞ is the spatial Dirac’s d-function. Fourier transformation of these equations yields
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KilðkÞGljðkÞ þ hiðkÞcjðkÞ ¼ dij

hT
l ðkÞGljðkÞ � kðkÞcjðkÞ ¼ 0

KilðkÞClðkÞ þ hiðkÞgðkÞ ¼ 0

hT
l ðkÞClðkÞ � kðkÞgðkÞ ¼ 1

ð10Þ

where

Kilðk;xÞ ¼ kjCijklkk � qx2dil; hiðkÞ ¼ ekilkkkl; hT
l ðkÞ ¼ eT

iklkikk; kðkÞ ¼ gikkikk ð11Þ
The solution of the system (10) can be written in the form

Gik ¼ Kik

�
þ 1

k
hihT

k

��1

; g ¼ �ðk þ hT
i K

�1
ij hjÞ

�1

ci ¼
1

k
hT
k Gki; Ci ¼ �K�1

ik hkg

ð12Þ

The symmetry of system (10) indicates that ci ¼ Ci. Introducing the notation

Gðk;xÞ ¼ Gikðk;xÞ ciðk;xÞ
cT
k ðk;xÞ gðk;xÞ

� �
ð13Þ

The x-representation of Green’s function can be obtained via the inverse Fourier transformation:

Gðx;xÞ ¼ 1

ð2pÞ3

Z
Gðk;xÞe�ik�x dk ð14Þ

Let us consider now an unbounded piezoelectric medium with electroelastic characteristics L0, con-
taining the region V (inclusion) with different electroelastic properties L. We start with the following system
of differential equations for the electroelastic fields in such a medium

ojCijklðxÞolukðxÞ þ qðxÞx2uiðxÞ þ ojejikðxÞokuðxÞ ¼ 0

oieiklðxÞolukðxÞ � oigikðxÞokuðxÞ ¼ 0
ð15Þ

Here CðxÞ, eðxÞ, gðxÞ and qðxÞ are functions of coordinates which are equal to C0, e0, g0, q0 in the main
material (matrix) and C , e, g, q inside of inclusion. One may represent functions CðxÞ, eðxÞ, gðxÞ, qðxÞ as
the sums

CðxÞ ¼ C 0 þ C1ðxÞ; eðxÞ ¼ e0 þ e1ðxÞ; gðxÞ ¼ g0 þ g1ðxÞ; qðxÞ ¼ q0 þ q1ðxÞ
C1ðxÞ ¼ C1V ðxÞ; e1ðxÞ ¼ e1V ðxÞ; g1ðxÞ ¼ g1V ðxÞ; q1ðxÞ ¼ q1V ðxÞ

ð16Þ

where V ðxÞ is the characteristic function of the region V occupied by the inclusion and the quantities with
the superscript ‘‘1’’ denote the differences

C1 ¼ C � C0; e1 ¼ e� e0; g1 ¼ g � g0; q1 ¼ q � q0 ð17Þ
Representation (16) allows to rewrite the system (15) in the form

ojC0
ijklolukðxÞþq0x

2uiðxÞþ oje0
jikokuðxÞ ¼� ojC1

ijklðxÞolukðxÞ
h

þq1ðxÞx2uiðxÞþ oje1
jikðxÞokuðxÞ

i
oieT0

iklolukðxÞ� oig
0
ikðxÞokuðxÞ ¼� oie1T

iklðxÞolukðxÞ
�

� oig
1
ikðxÞokuðxÞ

� ð18Þ
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The right-hand side of Eqs. (18) can be considered as a distribution of body forces and electric charges,
and one can replace these equations by a system of integral equations. This system can be written in the
following short form

fðxÞ ¼ f0ðxÞ þ
Z
V
S x
�

� x0	L1Fðx0Þdx0 þ x2q1

Z
V
G x
�

� x0	Jfðx0Þdx0 ð19Þ

where it is denoted

fðxÞ ¼
uiðxÞ
uðxÞ

� �
; SðxÞ ¼

Gik;lðxÞ ci;kðxÞ
cT
k;lðxÞ g;kðxÞ

 !
; L1 ¼ C1 e1

eT1 �g1

 !
;

FðxÞ ¼
eijðxÞ
�EiðxÞ

� �
; J ¼

dik 0

0 0

� �
ð20Þ

with f0ðxÞ ¼ ðu0
i ;u

0Þ denoting the ‘‘incident’’ fields and superscript ‘‘T’’ denotes the transposed tensor. The
incident fields satisfy the equations

ojC0
ijklolu

0
kðxÞ þ q0x

2u0
i ðxÞ þ oje0

jikoku
0ðxÞ ¼ 0

oieT0
iklolu

0
kðxÞ � oig

0
ikðxÞoku0ðxÞ ¼ 0

ð21Þ

It follows from (19) that the strain and electric fields F ¼ ðeij;�EiÞ in the material with inhomogeneity
satisfy the equations

FðxÞ ¼ F0ðxÞ þ
Z
V
Pðx� x0ÞLðx0Þdx0 þ x2q1

Z
V
Sðx� x0ÞJfðx0Þdx0;

F0ðxÞ ¼
e0
ijðxÞ

�E0
i ðxÞ

 !
; PðxÞ ¼

GiÞðk;lÞðjðxÞ ciÞ;kðjðxÞ
ck;ilðxÞ g;ikðxÞ

 !
ð22Þ

when x 2 V Eqs. (19) and (22) describe the electroelastic fields inside of the inhomogeneity from which the
fields outside of it can be uniquely constructed.

3. Electroelastic fields in the transversely isotropic piezoelectric medium containing one continuous cylindrical

fiber

We consider an inhomogeneity having the shape of an infinite circular cylinder (continuous fiber) with
the axis parallel to the x3-axis of the Cartesian coordinate system (Fig. 1).

Consider a plane wave propagating in the direction normal to x3-axis. Since LðxÞ and qðxÞ are functions
of x1; x2 only, the fields f0ðxÞ; fðxÞ;FðxÞ are independent of x3. Taking into account the relation

1

2p

Z 1

�1
e�ik3x03 dx03 ¼ dðk3Þ ð23Þ

Eqs. (19) and (22) are transformed into

fðyÞ ¼ f0ðyÞ þ
Z
S
Sðy� y0ÞL1Fðy0Þdy0 þ x2q1

Z
S
Gðy� y0ÞJfðy0Þdy0

FðyÞ ¼ F0ðyÞ þ
Z
S
Pðy� y0ÞL1Fðy0Þdy0 þ x2q1

Z
S
Sðy� y0ÞJfðy0Þdy0

ð24Þ

where S is the cylindrical cross-section, y ¼ ðx1; x2Þ and
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Gðy� y0Þ ¼ 1

ð2pÞ2

Z 1

0

k dk
Z 2p

0

Gðk;xÞ expð�ik � ðy� y0ÞÞd/; k ¼ ðk1; k2Þ ð25Þ

The expression for Gðk;xÞ is obtained from Gðk;xÞ given by (13) by putting k3 ¼ 0. Let us assume that
the matrix is transversely isotropic with the symmetry axis x3. The material is characterized by five inde-
pendent elastic moduli C0 ¼ fC0

11;C
0
12;C

0
13;C

0
33;C

0
44;C

0
66 ¼ ðC0

11 � C0
12Þ=2g, three piezoelectric constants e0 ¼

fe0
31; e

0
15; e

0
33g and two permeability coefficients g0 ¼ fg0

11; g
0
33g. The fiber material also possesses transversely

isotropic symmetry with the same orientation as the matrix material (Fig. 1). We denote the tensors of
elastic moduli, piezoelectric constants and permeability coefficients of the fibers by the same letters without
the superscript ‘‘0’’. For the transversely isotropic matrix one obtains

KikðkÞ ¼ K1nink þ K2ðhik � ninkÞ þ K3mimk

hiðkÞ ¼ hT
i ðkÞ ¼ k2e0

15mi; kðkÞ ¼ k2g0
11

ð26Þ

where

K1 ¼ k2C0
11 � q0x

2; K2 ¼ k2C0
66 � q0x

2; K3 ¼ k2C0
44 � q0x

2 ð27Þ
In these formulas mi is the unit vector of x3-axis and hij ¼ dij � mimj is the ‘‘plane’’ Kronecker’s delta.

Here and in what follows the Fourier vector k always is k ¼ ðk1; k2Þ and the notation ni ¼ ki=jkj for the unit
vector in k-direction is used.

Expressions (26), (27) and (12) imply that

Gikðk;xÞ ¼ 1

K1

nink þ
1

K2

ðhik � ninkÞ þ
1

K0
3

mimk

ciðkÞ ¼
e0

15

g0
11K

0
3

mi; gðk;xÞ ¼ � 1

k2g0
11

1

"
� k2ðe0

15Þ
2

g0
11K

0
3

#

K0
3 ¼ k2C0

44 � q0x
2; C0

44 ¼ C0
44 þ

ðe0
15Þ

2

g0
11

ð28Þ

Fig. 1. Schematic: continuous fiber embedded in an infinite matrix subjected to an electroacoustic incident wave field propagating

perpendicular to the fiber axis.
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Introducing the quantities

a2 ¼ q0x
2

C0
11

; b2
1 ¼

q0x
2

C0
66

; b2
2 ¼

q0x
2

C0
44

ð29Þ

the expressions (28) are recast as

Gikðk;xÞ ¼ 1

q0x2

b2
1

k2 � b2
1

hik

"
þ kikk

1

k2 � a2

 
� 1

k2 � b2
1

!
þ mimk

b2
2

k2 � b2
2

#

gðk;xÞ ¼ � 1

g0
11

1

k2
þ 1

q0x2

e0
15

g0
11

� �2
b2

2

k2 � b2
2

; ciðk;xÞ ¼ 1

q0x2

e0
15

g0
11

� �
b2

2

k2 � b2
2

mi

ð30Þ

To determine the x-representation of functions Gikðk;xÞ, ciðk;xÞ and gðk;xÞ, according to (14), we have
to calculate an integral of the type

I ¼ 1

ð2pÞ2

Z 1

0

kdk

k2 � b2

Z 2p

0

e�ik�y d/ ð31Þ

To regularize this integral we introduce here an infinitesimal constant � ! 0þ with b ¼ ðx=cÞ þ i�. This
step shifts the zeros of the denominator of the integrand into the complex plane to make this integral well
defined. Appendix A shows that this regularization procedure corresponds to an infinitesimal damping and
introduces causality (see Eq. (A.5)). Hence this regularization method has a strong physical motivation.

We haveZ 2p

0

e�ik�y d/ ¼
Z 2p

0

e�iky cos / d/ ¼ 2

Z p

0

cosðky cos /Þd/ ¼ 2pJ0ðkyÞ ð32Þ

where J0ðzÞ is Bessel’s function. In Appendix A it is outlined in detail (see Eqs. (A.5)–(A.20)) that

I ¼ lim
e!0

1

2p

Z 1

0

J0ðkyÞk dk

k2 � b2
¼ i

4
H ð1Þ

0 ðbyÞ ð33Þ

Here H ð1Þ
0 ðzÞ is Hankel’s function of the first kind. Hence, the x-x-representation of the Green’s func-

tions (30) has the form (Levin and Michelitsch, 1999)

Gikðr;xÞ ¼ i

4q0x2
hikb

2
1H

ð1Þ
0 ðb1rÞ

�
� o2

oyioyk
H ð1Þ

0 ðarÞ
h

� H ð1Þ
0 ðb1rÞ

i
þ mimkb

2
2H

ð1Þ
0 ðb2rÞ

�
ciðr;xÞ ¼ i

4q0x2

e0
15

g0
11

� �
b2

2H
ð1Þ
0 ðb2rÞmi

gðr;xÞ ¼ 1

2pg0
11

ln r þ i

4q0x2

e0
15

g0
11

� �2

b2
2H

ð1Þ
0 ðb2rÞ

ð34Þ

where r ¼ jyj.
A derivation of this Green’s function of both the x–x and the corresponding causal x–t representation is

given in Appendix A. It follows from the structure of Eqs. (24) and (25) that electroelastic coupling does not
influence the propagation of longitudinal and shear waves polarized in the x1–x2-plane. This is to be ex-
pected since this plane is the plane of isotropy so that the piezoelectric behavior does not manifest itself.
The situation, however, is quite different when shear waves, polarized in x3-direction (‘‘axial’’ shear waves)
propagate through the medium with inhomogeneity. The propagation of pure elastic waves in the medium
with fiber inclusion was studied in a series of publications, (e.g. Achenbach, 1973; Every and Kim, 1995;
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Tewary and Fortunko, 1992; Talbot and Willis, 1983). In the subsequent part we consider in detail only the
propagation of axial shear waves. If we introduce the notation

uðyÞ ¼ u3ðyÞ; ekðyÞ ¼
ou3ðyÞ
oyk

; C0
44 ¼ l0; e0

15 ¼ e0; g0
11 ¼ g0 ð35Þ

The elastic displacement uðyÞ and electric potential uðyÞ satisfy the system of Eqs. (24) and (25) in which
we put

fðyÞ ¼
uðyÞ
uðyÞ

� �
; FðyÞ ¼

ekðyÞ
�EkðyÞ

� �
; L1 ¼

l1 e1

e1 �g1

� �
GðRÞ ¼ 1

2pg0

T2 lnRþ 1

l0

T3GðRÞ; GðRÞ ¼ i

4
H ð1Þ

0 ðk0RÞ; J ¼ T1

T1 ¼
1 0

0 0

� �
; T2 ¼

0 0

0 1

� �
; T3 ¼

1 e0=g0

e0=g0 e0=g0ð Þ2

� �
k0 ¼ b2; R ¼ jy� y0j; l1 ¼ C44 � C0

44; e1 ¼ e15 � e0
15

g1 ¼ g11 � g0
11; l0 ¼ l0 þ

e2
0

g0

ð36Þ

The system of integral Eqs. (24) and (25) is difficult to solve exactly, so instead we restrict ourselves to the
long-wave approximation. If the wavelengths of the incident fields are much larger than the fiber diameter a
we can suppose that the change of the fields fðyÞ and FðyÞ inside of region S can be neglected. It gives

fðyÞ ¼ f0ðyÞ þ rgðyÞL1FðyÞ þ q1x
2gðyÞT1fðyÞ ð37Þ

FðyÞ ¼ F0ðyÞ þ PðyÞL1FðyÞ þ q1x
2rgðyÞT1fðyÞ ð38Þ

where it is denoted

gðyÞ ¼
Z
S
Gðy� y0Þdy0; PðyÞ ¼ r�rGðyÞ ð39Þ

gðyÞ is the integral of Green’s function over the inhomogeneity S and can be interpreted as the Green’s
function corresponding to a spatial source distribution which is represented by the inhomogeneity S, i.e. the
fiber cross-section with radius a.

During the integration of function G over the region S let us take into account thatZ
S

ln jy� y0jdy0 ¼ p
2
r2
�

� a2ð1 � 2 ln aÞ
�
; r ¼ jyj ð40Þ

where a is the fiber radius. This integral is derived in Appendix C. To calculate the integral of GðyÞ over the
inclusion it is convenient to use the Fourier transform

Gðy; aÞ ¼ i

4

Z
S
H ð1Þ

0 ðk0jy� y0jÞdy0 ¼ 1

ð2pÞ2

Z
dke�ik�yGðkÞ

Z
S

eik�y0 dy0 ð41Þ

An extensive derivation of this integral and a discussion of its properties and physical meaning is given in
Appendix B. Because ofZ

S
eik�y0 dy0 ¼ 2pa

k
J1ðkaÞ;

Z 2p

0

eik�y0 d/ ¼ 2pJ0ðkrÞ ð42Þ
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we obtain

Gðy; aÞ ¼ a
Z 1

0

J0ðkrÞJ1ðkaÞdk
k2 � k2

0

ð43Þ

This expression is evaluated in detail in Appendix B. Again we employ there the regularization method by
introducing an infinitesimal damping constant � ! 0þ according to (k0 ¼ Rek0 þ i�).

Via the representationZ 1

0

J0ðkrÞJ1ðkaÞdk
k2 � k2

0

¼ 1

k2
0

�
� o

oa

Z 1

0

J0ðkrÞJ0ðkaÞk dk
k2 � k2

0

�
Z 1

0

J0ðkrÞJ1ðkaÞdk
�

ð44Þ

the integral in the right-hand side of (43) is transformed into two simplest ones which yieldZ 1

0

J0ðkrÞJ1ðkaÞdk ¼ 1

a
;

Z 1

0

J0ðkrÞJ0ðkaÞk dk
k2 � k2

0

¼ lim
�!0

lim
R!1

Z R

0

J0ðkrÞJ0ðkaÞkdk

k2 þ ðik0Þ2
¼ I0ð�ik0rÞK0ð�ikaÞ

ð45Þ
where InðzÞ and KnðzÞ are the modified Bessel’s functions of the first and second kind.

Finally, we have for (43) ðr < aÞ

Gðy; aÞ ¼ 1

k2
0

ip
2
J0ðk0rÞk0aH

ð1Þ
1 ðk0aÞ

�
� 1

�
ð46Þ

A detailed derivation of (46) is given in Appendix B. According to (36) we can write

ojgðyÞ ¼
1

2g0

T2

�
� pi

2�ll0

T3J1ðk0rÞ
a
r
H ð1Þ

1 ðk0aÞ
�
yj

PðyÞ ¼ 1

2g0

T2hij �
1

�ll0

T3

J1ðk0rÞ
k0r

hij

�
� J2ðk0rÞninj

�
ip
2
k0aH

ð1Þ
1 ðk0aÞ; ni ¼ yi=jyj

ð47Þ

Let the incident fields u0ðyÞ and u0ðyÞ be plane axial shear waves

u0ðyÞ ¼ U 0eik0�y; u0ðyÞ ¼ U0eik0�y ð48Þ
Because of the equation

e0DuðyÞ � g0DuðyÞ ¼ 0 ð49Þ
the amplitude of the electric potential U0 is expressed via the amplitude of the elastic displacement U 0

U0 ¼ e0

g0

U 0 ð50Þ

If y 2 S we have in the long-wave limit eik�y � 1 and the gradients of these fields e0
kðyÞ and E0

kðyÞ have the
order x. We can now expand the Bessel’s functions in (46) and (47) into asymptotic series when their
arguments are small. In what follows we will take into account only the main terms of this expansion: the
terms that are constant (independent on x) in the real parts of all expressions and the terms having the
order x2 in the imaginary parts. 1 With the help of asymptotic formulas

JnðzÞ �
1

n!
z
2

� �n
;

ip
2
znH ð1Þ

n ðzÞ � 2n�1 ðn
�

� 1Þ!þ ip
n!

z
2

� �2n
�

ð51Þ

1 As it is well known such approximation will allow to describe the attenuation of the electroacoustic waves but not the dispersion.
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we can write the system (37) in the form of two equations

u ¼ U 0 þ q1

q0

� ip
4
ðk0aÞ2u

u ¼ U0 þ q1

q0

� ip
4
ðk0aÞ2u

ð52Þ

the solution of which with prescribed accuracy is

u ¼ 1

�
� q1

q0

� ip
4
ðk0aÞ2

�
U 0

u ¼ e0

g0

1

�
� q1

q0

� ip
4
ðk0aÞ2

�
U 0

ð53Þ

The second system of equations takes the form

F ¼ F0 þ PR

�
þ ip

4
ðk0aÞ2

PI

�
L1F ð54Þ

where it is denoted

PR ¼ 1

2

1

g0

T2

�
� 1

�ll0

T3

�
� h; PI ¼ � 1

2�ll0

T3 � h ð55Þ

where h ¼ ðhijÞ ¼ ðdij � mimjÞ. The solution of this system with the same accuracy is

F ¼ A

�
� ip

4
ðk0aÞ2

B

�
F0;

A ¼ I
�

� PRL1
	�1

; B ¼ �APIL1A

ð56Þ

The calculation of matrices A and B with the help of (55) gives

A ¼ a11 a12

a21 a22

� �
; B ¼ b11 b12

b21 b22

� �
ð57Þ

where
a11 ¼

2

D
e0ð2e0½ þ e1Þ þ l0ð2g0 þ g1Þ�

a12 ¼
2

D
ðe0g1 � g0e1Þ

a21 ¼
2

D
ðl0e1 � e0l1Þ

a22 ¼
2

D
e0ð2e0½ þ e1Þ þ g0ð2l0 þ l1Þ�

ð58Þ

and

b11 ¼
2l0

D2
ð2g0 þ g1Þ½e1ð2e0 þ e1Þ þ l1ð2g0 þ g1Þ�

b12 ¼
4l0

D2
ð2g0 þ g1Þðe1g0 � g1e0Þ

b21 ¼
2l0

D2
ð2e0 þ e1Þ½e1ð2e0 þ e1Þ þ l1ð2g0 þ g1Þ�

b22 ¼
4l0

D2
ð2e0 þ e1Þðe1g0 � e0g1Þ

ð59Þ
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In these expressions we have put

D ¼ ð2l0 þ l1Þð2g0 þ g1Þ þ ð2e0 þ e1Þ2 ð60Þ

Let us note that for the ‘‘static’’ case (k0 ¼ 0) the expression (56) (with the components aij) is in
agreement with the expressions obtained by Levin et al. (2000). We denote now the obtained approximated
solution (53) and (56) as

fð0Þ ¼ kf0; Fð0Þ ¼ KF0; k ¼ 1 þ q1

q0

ip
4
ðk0aÞ2

; K ¼ A� ip
4
ðk0aÞ2

B ð61Þ

and substitute these expressions into the initial integral equations. In symbolic form we can write

kf 0 �rgL1KF0 � q1x
2gT1kf

0 ¼ f0 þ D1

KF0 � PL1KF0 � q1x
2rgT1kf

0 ¼ F0 þ D2

ð62Þ

where D1 and D2 are the discrepancies due to proximity of expressions (61). To compensate these dis-
crepancies it is necessary to add to fð0Þ and Fð0Þ the items fð1Þ and Fð1Þ in such a way that the following
equations are satisfied

fð1Þ � rgL1Fð1Þ � q1x
2gT1f

ð1Þ ¼ D1

Fð1Þ � PL1Fð1Þ � q1x
2rgT1f

ð1Þ ¼ D2

ð63Þ

If we can neglect the quantities fð1Þ and Fð1Þ in comparison with (61) then functions fð0Þ and Fð0Þ are really
the main terms of expansion of the solution of the initial equations in the series with respect to parameter
k0a. Otherwise we have to add to (61) the main terms of analogous expansion of functions fð1Þ and Fð1Þ.

In our case D1 and D2 have the order Oððk0aÞ2Þ. Therefore functions fð1Þ and Fð1Þ have the order at least
Oððk0aÞ3Þ and can be neglected in comparison with fð0Þ and Fð0Þ.

4. Analogue of optical theorem and total scattering cross-section

As it follows from Eq. (24) the electroelastic fields in the matrix can be represented in the form

fðyÞ ¼ f0ðyÞ þ fsðyÞ ð64Þ

where fsðyÞ ¼ ðusðyÞ;usðyÞÞ are the scattering fields that are determined by the expression

fsðyÞ ¼
Z
S

rGðy
�

� y0ÞL1Fðy0Þ þ q1x
2Gðy� y0ÞT1fðy0Þ

�
dy0 ð65Þ

or in the more details

usðyÞ ¼
Z
S

WkðRÞekðy0Þ
�

� wkðRÞEkðy0Þ þ q1x
2GðRÞuðy0Þ

�
dy0

usðyÞ ¼
Z
S

UkðRÞekðy0Þ
�

� /kðRÞEkðy0Þ þ q1x
2 e0

g0

GðRÞuðy0Þ
�

dy0
ð66Þ

Here it is denoted R ¼ jy� y0j and
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WkðRÞ ¼ l1

�
þ e0

g0

e1

�
rkGðRÞ;

wkðRÞ ¼ e1

�
� e0

g0

e1

�
rkGðRÞ;

UkðRÞ ¼
e0

g0

l1rkGðRÞ þ e1rkgðRÞ;

/kðRÞ ¼
e0

g0

e1rkGðRÞ � g1rkgðRÞ

ð67Þ

GðRÞ ¼ i

4l0

H ð1Þ
0 ðk0RÞ; l0 ¼ l0 þ

e2
0

g0

gðRÞ ¼ 1

2pg0

lnRþ e0

g0

� �2
i

4l0

H ð1Þ
0 ðk0RÞ

ð68Þ

Expressions (66) allow us to find the far-field asymptotics of the electroelastic fields. Taking into account
the asymptotic formulas at R! 1 2

jy� y0j�1 � y�1; jy� y0j � y � ðn � y0Þ; ni ¼
yi
y
; y ¼ jyj ð69Þ

o

oyk1

� � � o

oykm
H ð1Þ

0 ðqRÞ � ðiqÞmnk1
� � � nkm

ffiffiffiffiffiffiffiffi
2

pqy

s
ei qy�p

4ð Þe�iqðn�y0Þ ð70Þ

we can write

usðyÞ ¼ CðnÞ eik0yffiffiffi
y

p ; usðyÞ ¼ e0

g0

CðnÞ eik0yffiffiffi
y

p ð71Þ

Here CðnÞ is the amplitude of cylindrical waves that can be represented in the form

CðnÞ ¼ i

2q0x2

ffiffiffiffiffiffi
k3

0

2p

r
e�

ip
4 ik0nk l1

��
þ e0

g0

e1

�Z
S

ekðy0Þe�ik0ðn�y0Þ dy0

� ik0nk e1

�
� e0

g0

g1

�Z
S
Ekðy0Þe�ik0ðn�y0Þ dy0 þ q1x

2

Z
S

uðy0Þe�ik0ðn�y0Þdy0
�

ð72Þ

Let us find now the asymptotic expressions for the gradients of the scattered electroelastic fields

es
k ¼ ik0nkCðnÞ

eik0yffiffiffi
y

p ; Es
k ¼ �ik0nk

e0

g0

CðnÞ eik0yffiffiffi
y

p ð73Þ

and corresponding fields of the stress rs
k and electric displacement Ds

k

rs
k ¼ l0e

s
k � e0E4

k ¼ ik0l0nkCðnÞ
eik0yffiffiffi
y

p

Ds
k ¼ e0e

s
k þ g0E

s
k � 0

ð74Þ

2 A general derivation of far-field asymptotics is given in Appendix D.
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Let us suppose that the incident fields have the form

u0ðyÞ ¼ U 0eik0n0�y; u0ðyÞ ¼ U0eik0n0�y ð75Þ
Because of equation

e0Du0ðyÞ � g0Du0ðyÞ ¼ 0

we have

U0 ¼ e0

g0

U 0 ð76Þ

and

r0
k ¼ ik0l0n

0
kU

0eik0n0�y; D0
k ¼ 0 ð77Þ

We define the intensity vector Ik associated with a stress field rk and the velocity _uu of the considered axial
shear wave by the relation

Ik ¼ rk _uu ð78Þ
Similarly, we denote by I s

k the intensity vector associated with the scattered fields, and by I0
k the intensity

vector associated with the incident fields. The term ‘‘intensity’’ refers to the rate of energy transfer per unit
area in the direction normal to the one of propagation, that is

I ¼ Iknk ð79Þ
where nk is the unit vector in the direction of propagation. The power flux (the rate of energy transfer across
the surface S with unit normal ni) is

Q ¼
Z
S
Iknk dS ¼

Z
S

rk _uunk dS ð80Þ

For a given angular frequency corresponding to period T the total scattering cross-section QðxÞ is the
ratio of the average power flux over all directions to the average intensity of the incident fields

QðxÞ ¼ hQsit
hI0it

ð81Þ

where h�it denotes the time averaging over the period T.
Having found the far-field asymptotics of the scattered electroelastic fields we can now compute the total

scattering cross-section according to relation (81). The power flux is a real number defined by

hQit ¼
1

4

Z
S

ðrk
D

þ r�
kÞð _uuþ _uu�Þ

E
t
nk dS ð82Þ

where � denotes the complex conjugate. Since we assume the vibrations are harmonic we can write

hQit ¼
ix
4

Z
S

rkue2ixt
�

� r�
ku

�e�2ixt þ r�
ku� rku�

�
t
nk dS ð83Þ

Computing the time average gives

hQit ¼
1

2
xIm

Z
S

rku�nk dS ð84Þ

Taking into account that

rk ¼ r0
k þ rs

k; u ¼ u0 þ us ð85Þ
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let us represent this value as the sum of three items connecting with incident fields hQ0it, scattered fields
hQsit and interference of the exciting and scattering fields hQintit:

hQit ¼ hQ0it þ hQsit þ hQintit hQ0it ¼
1

2
xIm

Z
S

r0
ku

0�nk dS;

hQsit ¼
1

2
xIm

Z
S

rs
ku

s�nk dS hQintit ¼
1

2
xIm

Z
S

r0
ku

s��
þ rs

ku
0�	nk dS ð86Þ

In view of the energy conservation law we have

hQsit ¼ �hQintit ¼ � 1

2
xIm

Z
S
ðr0

ku
s� þ rs

ku
0�Þnk dS ð87Þ

Because of hI0it ¼ 1
2
xIm½r0

ku
0�n0

k � ¼ 1
2
xk0l0, the total scattering cross-section is determined by the ex-

pression

QðxÞ ¼ hQsi
hI0it

¼ � ImJðxÞ
l0k0

ð88Þ

where it is denoted

JðxÞ ¼
Z
S
ðr0

ku
s� þ rs

ku
0�Þnk dS ð89Þ

and amplitude U 0 is taken equal to unity.
In the case considered, S is the cylindrical surface of a cylinder with large radius r and unit height coaxial

with the fiber. Hence, integral (89) can be rewritten as

JðxÞ ¼ r
Z 2p

0

ðr0
ku

s� þ rs
ku

0�Þnk d/; r ¼ jyj ð90Þ

Using expressions (74)–(77) we obtain

ðr0
ku

s� þ rs
ku

0�Þnk ¼
ik0l0ffiffi
r

p C�ðnÞe�ik0reik0n0�rðn0 � nÞ
�

þ CðnÞeik0re�ik0n0�r
�

ð91Þ

Let us suppose that the incident field is a plane wave propagating in the direction opposite to the positive
direction of x1-axis. Then

n0 ¼ ð�1; 0Þ; n ¼ ðcos /; sin /Þ; n0 � n ¼ � cos / ð92Þ
and integral JðxÞ takes the form

JðxÞ ¼ ik0l0

ffiffi
r

p
eik0r

Z 2p�/0

�/0

CðnÞeik0r cos / d/

"
� e�ik0r

Z 2p�/0

�/0

C�ðnÞe�ik0r cos / cos /d/

#
ð93Þ

This integral is performed over a whole period. Angle /0 with 0 < /0 < p is only introduced here to
make this expression useful for the application of the method of stationary points. 3 The derivation of the
main term of the asymptotics for r ! 1 of such an integral is shown in Appendix D. To that end we
consider the asymptotic representation of the integral

F ðkÞ ¼
Z b

a
f ðxÞ exp½ikSðxÞ�dx; k ! 1 ð94Þ

3 Due to the 2p-periodicity of the integrands the value of this integral is independent of /0.
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in the case when function SðxÞ has m simple stationary points xm (m ¼ 1; . . . ;m) with a < xm < b inside of
interval ½a; b�. 4 Then the leading term of the asymptotic expression (94) has the form

F ðk; fxmgÞ ¼
Xm
m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

kjS00ðxmÞj

s
f ðxmÞ
�

þ O
1

k

� ��
exp ikSðxmÞ

�
þ ip

4
sign½S00ðxmÞ�

�
ð95Þ

In Appendix D is given a detailed derivation of this expression where the method of stationary points is
applied.

In order to evaluate the farfield asymptotics of (93) we then have for r ! 1Z 2p

0

CðnÞeik0r cos / d/ �

ffiffiffiffiffiffi
2p
k0r

s
Cðn0Þe�ik0rþip

4

�
þ Cð � n0Þeik0r�ip

4

�
Z 2p

0

C�ðnÞ cos /eik0r cos / d/ �

ffiffiffiffiffiffi
2p
k0r

s �
� C�ðn0Þeik0r�ip

4 þ C�ð � n0Þe�ik0rþip
4

� ð96Þ

Hence,

JðxÞ ¼ il0

ffiffiffiffiffiffiffiffiffi
2pk0

p
Cðn0Þe

ip
4

h
þ C�ðn0Þe�

ip
4 þ Cð � n0Þe2ik0r�ip

4 � C�ð � n0Þe�2ik0rþip
4

i
¼ 2il0

ffiffiffiffiffiffiffiffiffi
2pk0

p
Re Cðn0Þe

ip
4

h i
� 2l0

ffiffiffiffiffiffiffiffiffi
2pk0

p
Im Cð
h

� n0Þe2ik0r�ip
4

i
ð97Þ

and according to (88) we obtain finally

QðxÞ ¼ �2

ffiffiffiffiffiffi
2p
k0

s
Re Cðn0Þe

ip
4

h i
ð98Þ

The last equation is the analogue of the optical theorem in the theory of electromagnetic waves (see, for
example Bohren and Huffmen (1983)).

In the long-wave limit we can put in the integrals of (72) expð�ik0n0 � y0Þ � 1. Taking into account that
the fields ek, Ek and u are constant inside of region S we have

Cðn0Þe
ip
4 ¼ i

pa2

2q0x2

ffiffiffiffiffiffi
k3

0

2p

r
ik0n0

k l1

��(
þ e0

g0

e1

�
ek � k0n0

k e1

�
� e0

g0

g1

�
Ek þ q1x

2u
�)

ð99Þ

It follows from here and (98) that

QðxÞ ¼ pa2

q0x2
k0Im ik0n0

k l1

��
þ e0

g0

e1

�
ek � ik0n0

k e1

�
� e0

g0

g1

�
Ek þ q1x

2u
�

ð100Þ

The expressions for the fields ek;Ek and u inside of region S in the long-wave approximation were ob-
tained in the Section 3 in (53) and (56)–(59). According to these formulae

Im ek ¼ � p
4
ðk0aÞ2 b11e

0
k

�
� b12E0

k

	
ImEk ¼

p
4
ðk0aÞ2 b21e

0
k

�
� b22E0

k

	
Imu ¼ p

4
ðk0aÞ2 q1

q0

ð101Þ

4 It is assumed that the integration limits a, b are no stationary points.
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where bij are determined in (59). After substitution of these expressions into the right-hand side of (100) and
taking into account that in the long-wave limit

e0
k ¼ ik0n0

k ; E0
k ¼ � e0

g0

ik0n0
k ð102Þ

we obtain

QðxÞ ¼ p2ðk0aÞ3

8
a

1

l0

lB

"(
þ 2

e0

g0

eB � e0

g0

� �2

gB

#
þ 2

q1

q0

� �2
)

ð103Þ

where it is denoted

lB ¼ l1b11 þ e1b21; eB ¼ l1b12 þ e1b22; gB ¼ g1b22 � e1b12 ð104Þ
It can be shown that expression (103) can be rewritten in the form

QðxÞ ¼ p2ðk0aÞ3

4
a

1

2�ll2
0

lA

"8<: þ 2
e0

g0

eA � e0

g0

� �2

gA

#2

þ q1

q0

� �2

9=; ð105Þ

Here it is denoted

lA ¼ l1a11 þ e1a21 ¼
2

D
2l1ðl0g0

�
þ e2

0Þ þ l0ðl1g1 þ e2
1Þ
�

eA ¼ l1a12 þ e1a22 ¼
2

D
2e1ðl0g0

�
þ e2

0Þ þ e0ðl1g1 þ e2
1Þ
�

gA ¼ g1a22 þ e1a12 ¼
2

D
2g1ðl0g0

�
þ e2

0Þ þ g0ðl1g1 þ e2
1Þ
� ð106Þ

where aij and D are determined in (58) and (60), respectively.
Let us note that quantities lA, eA, gA were introduced and calculated explicitly for the cylindrical fiber

with circular cross-section (Levin et al., 2000). The expressions (106) obtained here coincide completely with
those found in the mentioned paper. Besides that, the expression (105) for the total scattering cross-section
is in accordance with QðxÞ obtained by Levin and Michelitsch (2001).

5. Propagation of axial shear waves in the piezoelectric medium reinforced by a random set of fibers

We examine now an unbounded elastic piezoelectric medium with properties L0 and density q0, con-
taining a spatially homogeneous random set of parallel continuous fibers with properties L, density q and
having all the same radius a. In the y-plane the cross-sections of the fibers occupy a system of isolated
regions Sk with characteristic functions SkðyÞ, k ¼ 1; 2; . . . The electroelastic fields in such a medium satisfy
the equations similar to (24)

fðyÞ ¼ f0ðyÞ þ
Z

rGðy
�

� y0ÞL1Fðy0Þ þ q1x
2Gðy� y0ÞT1fðy0Þ

�
Sðy0Þdy0 ð107Þ

FðyÞ ¼ F0ðyÞ þ
Z

Pðy
�

� y0ÞL1Fðy0Þ þ q1x
2rGðy� y0ÞT1fðy0Þ

�
Sðy0Þdy0 ð108Þ

where SðyÞ denotes the characteristic function of the region S ¼
P

k Sk.
In Eqs. (107) and (108) the integral is performed over the region occupied by the inclusions. Thus, the

main unknowns of the problem are the fields inside of the fibers.
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Let us consider a realization of a random set of fibers in a homogeneous matrix. The distribution of the
fiber cross-sections in the transverse plane is assumed to be homogeneous and isotropic. If the incident field
is a plane monochromatic wave the mean fields are also plane waves in many important cases. The main
difficulty in constructing these fields is the appropriate description of the interaction between many in-
clusions in composite media. Strictly speaking, in order to construct these fields we have to find the detailed
wave fields for every realization of the random set of inclusions and then to average the result over an
ensemble of realizations of this set. The principal difficulties of this problem enable us only to find its
approximate solution. Self-consistent schemes are powerful tools to obtain such solutions.

Here we use one of the self-consistent schemes named effective field method. This method is based on
the following hypothesis (for statics this variant of the effective field method was developed by Kanaun
(1983)):

H1 Every fiber in the composite behaves as an isolated one (with number k ¼ 1; 2; . . .) in the medium (ma-
trix) affected by external fields f�ðkÞðyÞ and F�

ðkÞðyÞ. The latter are the sum of the external fields f0ðyÞ and
F0ðyÞ applied to the medium and the fields scattered on all surrounding fibers.

Let now f�ðyÞ and F�ðyÞ be the fields coinciding with f�ðkÞðyÞ and F�
ðkÞðyÞ when y 2 Sk. With the help of

definition

Sðy; y0Þ ¼
X
i 6¼k

Siðy0Þ; y 2 Sk ð109Þ

we may write for an arbitrary point y inside of domain S

f�ðyÞ ¼ f0ðyÞ þ
Z

rGðy
�

� y0ÞL1Fðy0Þ þ q1x
2Gðy� y0ÞT1fðy0Þ

�
Sðy; y0Þdy0 ð110Þ

F�ðyÞ ¼ F0ðyÞ þ
Z

Pðy
�

� y0ÞL1Fðy0Þ þ q1x
2rGðy� y0ÞT1fðy0Þ

�
Sðy; y0Þdy0 ð111Þ

Hypothesis H1 reduces the problem of interaction between many inclusions to a one-particle problem.
In Section 3 this problem was solved in the long-wave approximation. In this approximation we sup-
pose that the fields f�ðyÞ and F�ðyÞ are constant in every region occupied by the fiber cross-sections (but
may vary randomly from one fiber cross-section to another) we can write according to expressions (53) and
(56)

fðxÞ ¼ df�ðxÞ; FðxÞ ¼ DF�ðxÞ

d ¼ dR þ ip
4
ðk0aÞ2 q1

q0

dI ; dR ¼
1 0

0 1

� �
; dI ¼

1 0

1 0

� �
D ¼ A� ip

4
ðk0aÞ2

B

ð112Þ

where A and B were determined in (57)–(61).
Substitution of expressions (112) into the right-hand side of Eqs. (107), (108) and (110), (111) allows us

to express the electroelastic fields fðxÞ, FðxÞ at an arbitrary point of the medium by the local external fields

fðyÞ ¼ f0ðyÞ þ
Z

rGðy
�

� y0ÞLDF�ðy0Þ þ q1x
2Gðy� y0Þd1f

�ðy0Þ
�
Sðy0Þdy0 ð113Þ

FðyÞ ¼ F0ðyÞ þ
Z

Pðy
�

� y0ÞLDF�ðy0Þ þ q1x
2rGðy� y0Þd1f

�ðy0Þ
�
Sðy0Þdy0 ð114Þ
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where it is denoted

LD ¼ L1D; d1 ¼ dT1; d ¼ 1 þ q1

q0

ip
4
ðk0aÞ2 ð115Þ

and obtain a system of self-consistent equations to determine the fields f�ðyÞ and F�ðyÞ

f�ðyÞ ¼ f0ðyÞ þ
Z

rGðy
�

� y0ÞLDF�ðy0Þ þ q1x
2Gðy� y0Þd1f

�ðy0Þ
�
Sðy; y0Þdy0 ð116Þ

F�ðyÞ ¼ F0ðyÞ þ
Z

Pðy
�

� y0ÞLDF�ðy0Þ þ q1x
2rGðy� y0Þd1f

�ðy0Þ
�
Sðy; y0Þdy0 ð117Þ

Because we are concerned with a random set of fibers the fields fðyÞ, FðyÞ and f�ðyÞ, F�ðyÞ are random
functions. By taking the ensemble average of both sides of Eqs. (113), (114) we find

hfðyÞi ¼ f0ðyÞ þ p
Z

rGðy
h

� y0ÞLDbFF �ðy0Þ þ q1x
2Gðy� y0Þd1

bff �ðy0Þidy0 ð118Þ

hFðyÞi ¼ F0ðyÞ þ p
Z

Pðy
h

� y0ÞLD bFF �ðy0Þ þ q1x
2rGðy� y0Þd1

bff �ðy0Þidy0 ð119Þ

where it is denotedbFF �ðyÞ ¼ hFðyÞjyi; bff �ðyÞ ¼ hfðyÞjyi ð120Þ
Symbol h�jyi depicts the ensemble mean under the condition that point y is located in the region S

occupied by the fiber cross-sections, p ¼ hSðyÞi is the volume concentration of the fibers.
It follows from Eqs. (118), (119) that the average fields hfðyÞi and hFðyÞi at an arbitrary point y of a

transverse plane of composite material are expressed via the conditional means of the effective fields bff �ðyÞ
and bFF �ðyÞ. These averages can be obtained with the help of Eqs. (116), (117). After the averaging of both
parts of these equations under the conditions y 2 S we can write

bff �ðyÞ ¼ f0ðyÞ þ p
Z

rGðy
h

� y0ÞLDbFF �ðy; y0Þ þ q1x
2Gðy� y0Þd1

bff �ðy; y0Þ
i
Wðy� y0Þdy0 ð121Þ

bFF �ðyÞ ¼ F0ðyÞ þ p
Z

Pðy
h

� y0ÞLD bFF �ðy; y0Þ þ q1x
2rGðy� y0Þd1

bff �ðy; y0ÞiWðy� y0Þdy0 ð122Þ

where it is denoted

bFF �ðy; y0Þ ¼ hF�ðy0Þjy0; yi; bff �ðy; y0Þ ¼ hf�ðy0Þjy0; yi Wðy� y0Þ ¼ hSðy; y0Þjyi
hSðyÞi ð123Þ

In these expressions h�jy; y0i is the mean under the condition y; y0 2 S and the following relationship was
taken into account

f�ðy0ÞSðy; y0Þ
� �

¼ f�ðy0Þjy0; y
� �

Sðy; y0Þjy
� �

F�ðy0ÞSðy; y0Þ
� �

¼ F�ðy0Þjy0; y
� �

Sðy; y0Þjy
� � ð124Þ

This result follows from the definition of the conditional means of random functions f�ðyÞ and F�ðyÞ.
In general, mean h�jy0; yi differs from h�jyi. To obtain the expressions for the means bff �ðy; y0Þ and F�ðy; y0Þ

we can average both sides of Eqs. (116), (117) under the condition y; y0 2 S. But in the right-hand sides of
these equations we will have the conditional means of more complex structure. Thus, we obtain a hierarchy
of equations connecting the conditional means of the effective fields f�ðyÞ and F�ðyÞ. To close this hierarchy
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we must invoke certain additional assumptions concerning the statistical properties of the effective fields.
The simplest assumption is represented by the analogue of the so-called ‘‘quasicrystalline approximation’’
proposed by Lax (1951, 1952), according to which the means h�jy0; yi and h�jyi coincide. This results in

bff �ðyÞ ¼ f0ðyÞ þ p
Z

rGðy
h

� y0ÞLD bFF �ðy0Þ þ q1x
2Gðy� y0Þd1

bff �ðy0ÞiWðy� y0Þdy0 ð125Þ

bFF �ðyÞ ¼ F0ðyÞ þ p
Z

Pðy
h

� y0ÞLDbFF �ðy0Þ þ q1x
2rGðy� y0Þd1

bff �ðy0ÞiWðy� y0Þdy0 ð126Þ

It follows from the definition of function Sðy; y0Þ (109) that WðyÞ is a continuous function and

WðyÞ ¼ 0; when y ¼ 0 ð127Þ
Because of weakening in geometrical linkage between the position of the fibers when the distances be-

tween them increase, the following relation holds

WðyÞ ! 1; when jyj ! 1 ð128Þ
Function WðyÞ defines the shape of the ‘‘correlation hole’’ inside which a typical fiber is located.
If the random set of fiber cross-sections possesses some symmetry (in the statistical sense) it affects the

symmetry of function WðyÞ. Particularly, if the random set of cross-sections is isotropic, function WðyÞ
depends only on jyj i.e. WðyÞ ¼ WðjyjÞ. The deviation of the random set of fibers from isotropy can mean
the existence of texture. Let us assume that there exists a linear transformation of y-plane that rearranges
function WðyÞ into a spatially symmetric one

z ¼ aðaÞy; Wða�1ðaÞyÞ ¼ WðjyjÞ ð129Þ
In this case an ellipse defined by the expression

jaðaÞyj ¼ 1

with semi-axes a ¼ ða1; a2Þ describes the shape of the correlation hole (corresponding to texture). In the
general case it is impossible to find such a transformation.

Eliminating the external fields f0ðyÞ and F0ðyÞ from Eqs. (118), (119) and (125), (126), we get a system of
equations which couple the effective fields bff �ðyÞ, bFF �ðyÞ and average fields hfðyÞi, hFðyÞi in the composite
material

bff �ðyÞ ¼ hfðyÞi � p
Z

rGðy
h

� y0ÞLD bFF �ðy0Þ þ q1x
2Gðy� y0Þd1

bff �ðy0ÞiUðy� y0Þdy0 ð130Þ

bFF �ðyÞ ¼ hFðyÞi � p
Z

Pðy
h

� y0ÞLDbFF �ðy0Þ þ q1x
2rGðy� y0Þd1

bff �ðy0ÞiUðy� y0Þdy0 ð131Þ

where it is denoted

UðyÞ ¼ 1 � WðyÞ ð132Þ
For a spatially homogeneous random set of fibers UðyÞ is a smooth function which quickly goes to zero

outside a region having a size of the order of the correlation hole size. In the long-wave approximation we
can neglect the change of the fields bff �ðyÞ; bFF �ðyÞ in this region. If we assume that the distribution of the fiber
cross-sections is isotropic UðyÞ ¼ UðjyjÞ Eqs. (130) and (131) take the formbff �ðyÞ ¼ hfðyÞi � pq1x

2GUd1
bff �ðyÞ ð133Þ

bFF �ðyÞ ¼ hFðyÞi � pPULD bFF �ðyÞ ð134Þ
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where it is denoted

GU ¼
Z

GðyÞUðjyjÞdy; PU ¼
Z

PðyÞUðjyjÞdy; ð135Þ

and the relationZ
rGðyÞUðjyjÞdy ¼ 0 ð136Þ

is taken into account.
System (133) is equivalent to the two equations

buu�ðyÞ ¼ huðyÞi � p
q1

q0

k2
0G

Udbuu�ðyÞ
buu�ðyÞ ¼ huðyÞi � p

q1

q0

k2
0G

Ud
e0

g0

buu�ðyÞ ð137Þ

where

GU ¼ ip
2

Z 1

0

H0ðk0rÞUðrÞrdr ð138Þ

Because of the mentioned properties of the function UðrÞ we can represent the function H0ðk0rÞ in this
integral by the main terms of its asymptotic expansion, in the long-wave limit k0r � 1 where l is the cor-
relation hole radius (a quantity having the order of the mean distances between the fiber cross-sections in
the y-plane)

ip
2
H ð1Þ

0 ðk0rÞ � � lnðk0rÞ
�

� ip
2

�
ð139Þ

If we take into account (as in Section 3) only the main terms in the real and imaginary parts of Eq. (137)
we can write

buu�ðyÞ ¼ 1

�
� p

q1

q0

ip
4
ðk0aÞ2J

�
huðyÞi

buu�ðyÞ ¼ huðyÞi � p
q1

q0

ip
4
ðk0aÞ2J

e0

g0

huðyÞi
ð140Þ

where it is denoted

J ¼ 2

a2

Z 1

0

UðrÞrdr ð141Þ

Let us return now to Eq. (135). It is convenient to write operator PU in the form

PU ¼
Z

PðyÞUðjyjÞdy ¼
Z

1

ð2pÞ2

Z
PðkÞe�ik�y dk

" #
UðjyjÞdy

¼ 1

2p

Z 1

0

Z
PðkÞJ0ðkrÞdk

� �
UðrÞrdr ð142Þ

where

PðkÞ ¼ 1

g0

T2

�
� 1bll0

1

�
þ k2

0

k2 � k2
0

�
T3

�
ninj; ni ¼

ki
k

ð143Þ
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The internal integral in (142) can be transformed into one-dimensional integrals in the following wayZ
PðkÞJ0ðkrÞdk ¼

Z 1

0

J0ðkrÞkdk
Z 2p

0

PðkÞd/

¼ p
1

g0

T2

��
� 1bll0

T3

�Z 1

0

J0ðkrÞkdk � k0

Z 1

0

J0ðkrÞkdk
k2 � k2

0

� �
T3

�
hij ð144Þ

Taking into account the relationsZ 1

0

J0ðkrÞkdk ¼ 1

2p

Z
eik�y dk ¼ 2pdðyÞ

2p
Z 1

0

dðyÞUðrÞrdr ¼
Z

dðyÞUðrÞdy ¼ Uð0Þ ¼ 1Z 1

0

J0ðkrÞkdk
k2 � k2

0

¼ ip
2
H ð1Þ

0 ðk0rÞ

ð145Þ

where the last integral is derived in detail in Appendix A. We obtain finally

PU ¼ PR � ip
4
ðk0aÞ2JPI ð146Þ

where operators PR and PI are determined in (55).
The solution of Eq. (134) with respect to bFF �ðyÞ and prescribed accuracy can be written in the form

bFF �ðyÞ ¼ DR I

�
þ p

ip
4
ðk0aÞ2ðPRLA þ JIÞPILR

�
hFðyÞi

DR ¼ I
�

þ pPRLA
	�1

; LA ¼ L1A; LR ¼ LADR

ð147Þ

Substitution of obtained expressions (140) and (147) in the right-hand side of Eq. (118) gives after some
lengthy but elementary algebra

hfðyÞi ¼ f0ðyÞ þ p
Z

rGðy� y0Þ LR

�
� ip

4
ðk0aÞ2ð1 � pJÞLRPILR

�
hFðy0Þidy0

þ pq1x
2

Z
Gðy� y0Þ 1

�
þ ip

4
ðk0aÞ2ð1 � pJÞ q1

q0

�
T1hfðy0Þidy0 ð148Þ

Let us apply to the both sides of Eq. (148) operator rL0rþ q0x
2T1. Taking into account that Green’s

function GðyÞ and incident fields f0ðyÞ satisfy the equations

rL0r
�

þ q0x
2T1

	
GðyÞ ¼ �IdðyÞ; ðrL0rþ q0x

2T1Þf0ðyÞ ¼ 0 ð149Þ

we obtain an equation determining hfðyÞi in the form

rL�r
�

þ q�x
2T1

	
hfðyÞi ¼ 0 ð150Þ

where it is denoted

L� ¼ Ls � p
ip
4
ðk0aÞ2ð1 � pJÞLI ; Ls ¼ L0 þ pLR; LI ¼ LRPILR

q� ¼ qs þ p
ip
4
ðk0aÞ2ð1 � pJÞ q2

1

q0

; qs ¼ q0 þ pq1

ð151Þ

Operator rL�r þ q�x
2T1 can be called effective wave operator that describes the axial shear wave

propagation in the piezoelectric medium reinforced by unidirectional aligned continuous fibers. It has the
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same form that has the analogous operator for homogeneous material with electroelastic characteristics L�

and density q� which are yet complex quantities. Their real parts determine the velocity of the axial shear
wave propagation and their imaginary parts determine the attenuation factor for these waves. Let us note
that the real parts of all these characteristics are independent of frequency. It was to be expected in the long-
wave approximation because then all terms depending on frequency in the real parts of all expressions are
neglected in comparison with the constant (‘‘static’’) parts. In result we obtain the effective wave operator
which describes the wave propagation in the medium with wave attenuation but without dispersion.

The operator of ‘‘static’’ electroelastic characteristics Ls in details can be written in the form

Ls ¼ ls es

es �gs

� �
ð152Þ

ls ¼ l0 þ plR; es ¼ e0 þ peR; gs ¼ g0 þ pgR ð153Þ
where it is denoted

lR ¼ 1

D
l1

�
þ ð1 � pÞl0

l1g1 þ e2
1

2ðl0g0 þ e2
0Þ

�
eR ¼ 1

D
e1

�
þ ð1 � pÞe0

l1g1 þ e2
1

2ðl0g0 þ e2
0Þ

�
gR ¼ 1

D
g1

�
þ ð1 � pÞg0

l1g1 þ e2
1

2ðl0g0 þ e2
0Þ

�
D ¼ 1

�
þ ð1 � pÞ g1l0 þ e1e0

2ðl0g0 þ e2
0Þ

�
1

�
þ ð1 � pÞ l1g0 þ e1e0

2ðl0g0 þ e2
0Þ

�
� ð1 � pÞ2

4ðl0g0 þ e2
0Þ

2
ðe1g0 � g1e0Þðl1e0 � e1l0Þ

ð154Þ
Expressions (152), (154) coincide with those obtained by Levin (1996b).
Operator LI has the analogous form

LI ¼
lI eI
eI �gI

� �
lI ¼

1

2l0

lR

�
þ e0

g0

eR

�2

eI ¼
1

2l0

lR

�
þ e0

g0

eR

�
eR

�
� e0

g0

gR

�
gI ¼ � 1

2l0

eR

�
þ e0

g0

gR

�2

ð155Þ

6. Effective wave velocity and attenuation factor

The equation of motion can now be written as

l�DhuðyÞi þ e�DhuðyÞi þ q�x
2huðyÞi ¼ 0

e�DhuðyÞi � g�Dhui ¼ 0
ð156Þ

Let the average elastic displacement and electric potential be a plane axial shear wave with polarization U
and U and effective wave number k�
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huðyÞi ¼ Ueik�n�y; huðyÞi ¼ Ueik�n�y ð157Þ

It follows from the second Eq. (156) that

U ¼ e�
g�
U ð158Þ

and the first Eq. (156) gives

l�

�
þ e2

�
g�

�
k2
� � q�x

2 ¼ 0 ð159Þ

Taking into account that in the long-wave approximation (k0a� 1)

l� þ
e2
�

g�
¼ ls � p

ip
4
ðk0aÞ2ð1 � pJÞ lI

"
þ 2

es

gs

eI �
es

gs

� �2

gI

#
¼ ls � p

ip
4
ðk0aÞ2ð1 � pJÞ bll2

I

2bll0

;

ls ¼ ls þ
e2

s

gs

; lI ¼ lR þ e0

g0

eR þ es

gs

eR

�
� e0

g0

gR

�
ð160Þ

and solving Eq. (159) with respect to k� we obtain

k� ¼ ks þ ic; ks ¼
x
vs

; vs ¼
ffiffiffiffiffi
ls

qs

s
ð161Þ

Here vs is the wave velocity in the composite material, c is the attenuation factor that is determined by the
expression

c ¼ 1

16

n0p2

q0qs

ð1 � pJÞðksaÞ3a
l2
I

v4
0

"
þ 2 q1

k0

ks

� �2
#
; v2

0 ¼
l0

q0

ð162Þ

where n0 is the numerical concentration of the fibers (p ¼ n0pa2).
In accordance with its physical meaning the attenuation factor has to be a positive quantity. Conse-

quently the multiplier 1 � pJ in (162) should satisfy the condition

1 � 2p
a2

Z 1

0

UðrÞrdrP 0 ð163Þ

This imposes a constraint on the fiber volume concentration p for which the resulting formula (162) remains
physically consistent. For example, for a function (‘‘well-stirred’’ approximation)

UðrÞ ¼ 1 � H
r
a

�
� 2
�

ð164Þ

where HðzÞ is the Heaviside function, c is positive only for p6 0:25. It follows from here that the expression
for c (162) (in contrast with the expression for the effective wave velocity) is very sensitive to the form of
pair correlation function. We must emphasize that the closure condition used above, which determines the
structure of multiplier 1 � pJ are hardly valid for high fiber concentrations. It is obvious that the corre-
lation in spatial location of the fiber cross-sections increases with increasing p. Hence, sufficiently simple
approximations of function UðrÞ are possible only for a small p. A construction of this function for high
fiber concentration presents considerable difficulties (see the discussion of this question, for example,
Talbot and Willis (1983)).

Let the fiber cross-sections compose a regular lattice in a homogeneous matrix. In this case the integral
from function UðrÞ equals to the square of the periodic cell and multiplier 1 � pJ equals to zero. This
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corresponds to the well-known fact that a long wave propagation through periodical structures is free from
attenuation.

We suppose in conclusion that the volume concentration of fibers is small (p � 1). In this case we can
drop all terms in the right-hand side of (162) having the order OðpÞ. It gives

es; gs ! e0; g0; lR; eR; gR ! lA; eA; gA;

lI ! lA þ 2
e0

g0

eA � e0

g0

� �2

gA

ð165Þ

and the attenuation factor is determined by the expected expression

c ¼ 1

2
n0QðxÞ ð166Þ

where QðxÞ is the total scattering cross-section (105).

7. Numerical example

Here we consider the dependency of the static part of the electroelastic moduli of the volume concen-
tration p of the fibers (Eqs. (152), (154)) for BaTiO3-fibers which are embedded in a PZT-5H-matrix. The p
dependency of expressions (152), (154) is plotted in Figs. 2 and 3, respectively. The electroelastic matrix-
and fiber moduli which have been used are taken from Huang and Kuo (1996):

PZT-5H-matrix: l0 ¼ C0
44 ¼ 35:5 GPa, e0 ¼ e0

15 ¼ 17:0C m�2

BaTiO3-fibers: l0 þ l1 ¼ C0
44 þ C1

44 ¼ 43 GPa, e0 þ e1 ¼ e0
15 þ e1

15 ¼ 11:6C m�2

Fig. 2 shows the fiber concentration dependency of effective electroelastic moduli starting at p ¼ 0
(absence of fibers) to p ¼ 1 (limiting case of pure fiber material). We observe only a smooth dependency of
ls ¼ C44 and es ¼ e15 of the fiber concentration p.

Fig. 2. ls (GPa) and es (C/m2) from Eqs. (153) vs. fiber concentration p.
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In Fig. 3 the effective propagation velocity of electroacoustic waves is drawn vs. fiber concentration (Eq.
(161)). In this plot we have assumed q0 ¼ q1, that is, the mass density of the fiber material is twice as much
as the density of matrix material (q ¼ 2q0 ¼ q0 þ q1). We then observe a decrease of the effective wave
propagation velocity with increase of fiber volume concentration p. This decrease is caused only by the
difference in mass densities of fiber and matrix material determined by Eq. (161) together with (151). This
decrease is removed when the mass densities of fiber and matrix material are coincident. Then the effective
wave velocity is determined only by the increase of

ffiffiffiffiffi
ls

p
corresponding to Fig. 2.

8. Conclusions

The goal of this paper was the study of effective dynamic characteristics of piezocomposites. In the first
part of the paper we considered the scattering problem of electroacoustic axial shear waves for an isolated
continuous fiber in the framework of the long-wave approximation (Sections 2, 3). In this approximation
the set of self-consistent integral equations for the scattered electroelastic field (Eqs. (19), (22)) is reduced to
a system of algebraic equations (Eqs. (37), (38)). The solution of this equation system requires the explicit
evaluation of integrals occurring in its coefficients (Eq. (39)). Crucial for the explicit derivation of these
integrals 5 resulting in Eqs. (46) and (47), is the availability of the explicit form of the dynamic electroelastic
quasiplane Green’s function (Eq. (34)) which was already derived earlier (Levin and Michelitsch, 1999). 6

By using these results for the scattered electroelastic field we derived the total cross-section in explicit form
(see Eqs. (100)–(106)) by utilizing the electroacoustic analogue of optical theorem and the long-wave ap-
proximation.

Based on these results for the scattering problem of one isolated fiber (‘‘one-particle problem’’) we
considered in the second part of the paper (Sections 5, 6) the ‘‘multiple-particle’’ scattering problem of a
statistical ensemble of continuous fibers. By introducing statistical assumptions (Eqs. (127)–(129)) char-
acterizing the texture of the fiber distribution, the set of integral equations for the scattered fields on a

Fig. 3. Normalized propagation velocity vsðpÞ=vsð0Þ for q ¼ 2q0, q0 ¼ q1.

5 For detailed derivations and physical interpretation of these integrals, see Appendix B and C.
6 A detailed derivation of this Green’s function is also given in Appendix A.
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random set of fibers (Eqs. (107), (108)) was reduced to a self-consistent scheme, of an effective ‘‘one-
particle’’ scattering problem (Eqs. (133), (134)) in the long-wave approximation. In the framework of this
effective field method, a wave equation (Eq. (150)) was derived for the average field with an effective wave
operator, leading to the effective dynamic characteristics (151) which are complex quantities. From these
dynamic characteristics, the effective wave vector was determined (Eq. (161)). Its real part determines the
effective wave velocity (Eq. (161)) and its imaginary parts determines the attenuation factor (Eq. (162)) of
the considered electroacoustic axial shear wave. All these results for the effective dynamic characteristics
were derived in full explicit form in the framework of the long-wave approximation.

As a consequence of the long-wave approximation, the results for the dynamic characteristics of Section
6 cover the lowest orders in their frequency dependencies and thus describe attenuation but not dispersion
effects of electroacoustic axial shear waves. The description of dispersion effects requires an approach
beyond the long-wave approximation and is therefore highly desirable. The achieved results may inspire
further work in this direction and in general for the modelling of dynamic characteristics of fiber reinforced
piezocomposites.
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Appendix A

Here we derive the quasiplane dynamic Green’s function (34) in the space-frequency and in the causal
space-time representation, respectively. The problem to obtain this Green’s function is reduced in finding
scalar Green’s functions �ggðr; tÞ and �hhðr; tÞ, 7 the first being Green’s function of scalar wave equation of the
form

1

c2

o

ot

�"
þ �

�2

� D

#
�ggðr; tÞ ¼ dðtÞd2ðrÞ ðA:1Þ

and the second one is Green’s function defined by

1

c2

o

ot

�"
þ �

�2

� D

#
o

ot

�
þ �

�2

�hhðr; tÞ ¼ dðtÞd2ðrÞ ðA:2Þ

In (A.1) and (A.2) we introduced an infinitesimal damping term � ! 0þ leading to causal behavior, that
is, �gg and �hh are only non-zero for t > 0. We observe that Green’s function �hh and �gg are related to each other
by the convolution

�hhðr; tÞ ¼
Z 1

�1
f ðt � sÞ�ggðr; sÞds ðA:3Þ

where f ðtÞ is the Green’s function defined by

o

ot

�
þ �

�2

f ðtÞ ¼ dðtÞ ðA:4Þ

7 r ¼ ðx; yÞ denotes here the plane space vector.
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which has the solution f ðtÞ ¼ e��ttHðtÞ. Here we introduced the Heaviside step function HðtÞ which indi-
cates causality and is characterized by HðtÞ ¼ 1 if t > 0 and HðtÞ ¼ 0 if t < 0. Thus we can obtain �hhðr; tÞ
easily from (A.3) after having determined �ggðr; tÞ. 8 First of all, we obtain by using the residue theorem

�ggðk; tÞ ¼ 1

2p

Z þ1

�1

e�ixt dx

k2 þ �� i x
c

� 	2
¼ c2HðtÞ sinðcktÞ

ck
e��t ðA:5Þ

Here the damping constant � ! 0þ infinitesimally shifts the singularities of the integrand into the lower
complex x-plane at x1;2 ¼ �i�� ck. Moreover, to apply the residue theorem we have to close the inte-
gration path by semi-circles with radii jxj ! 1 in the complex x-plane. In view of the exponent in (A.5) we
have to distinguish the cases t < 0 and t > 0, respectively. For t < 0 we have to close the contour by a semi-
circle in the upper complex plane (Imx > 0) and for t < 0 we have to close the contour by a semi-circle in
the lower complex plane (Imx < 0). The contribution of the added integrations over the semi-circles tend
to zero when jxj ! 1.

For t < 0 integral (A.5) vanishes since it has no residues in the upper complex plane. For t > 0 the
integral (A.5) is non-zero and yields �2pi times the sum of the residues located in the lower complex plane
at x1;2 ¼ �i�� ck. 9 This property is expressed by the Heaviside HðtÞ-step-function and indicates causality
and is solely effected by the infinitesimal damping constant �. Expression (A.5) is known as the causal
Green’s function of an infinitesimally damped harmonic oscillator with eigenfrequency ck fulfilling the
differential equation 10

d

dt

�"
þ �

�2

þ c2k2

#
gðk; tÞ ¼ c2dðtÞ ðA:6Þ

The exponential term in (A.5) e��t ! 1 and can therefore be omitted for finite t when � ! 0þ. The space
time representation is obtained by

�ggðr; tÞ ¼ 1

ð2pÞ2

Z
eik�r~ggðk; tÞd2k ðA:7Þ

This expression we can transform with (A.5) into

�ggðr; tÞ ¼ HðtÞ c

ð2pÞ2

Z 2p

0

du
Z 1

0

sinðk½ct þ kr cos u�Þdk ðA:8Þ

In this expression we have used the propertyZ 2p

0

du sinðkr cos uÞ ¼ 0 ðA:9Þ

To define the k-integral (A.8) we regularize it as followsZ 1

0

sin kkdk ¼ lim
�!0þ

Z 1

0

e��k sin kkdk ¼ lim
�!0þ

Re
1

k þ i�
ðA:10Þ

so that we can write for (A.8)

8 To determine �ggðr;xÞ, it is more convenient to calculate first �ggðr; tÞ.
9 The negative sign comes into play because the residues are circulated clockwise.
10 See textbooks of theoretical physics, e.g. Haake (1983).
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�ggðr; tÞ ¼ cHðtÞ
ð2pÞ2

Re

Z 2p

0

du
r cos u þ ct þ i�

ðA:11Þ

To evaluate (A.11) we put ct=r ¼ cosh / where / is real for ct=r > 1 and / imaginary for ct=r < 1. Then we
can write (A.11) in the form

�ggðr; tÞ ¼ þ cHðtÞ
ð2pÞ2

2

r
Re

Z 2p

0

eiudu
e2iu þ 2eiu cosh / þ 1

¼ þ cHðtÞ
ð2pÞ2

Re
2

ir

I
jsj¼1

ds
s2 þ 2s cosh / þ 1

ðA:12Þ

Introducing the complex variable s ¼ eiu we can write (A.12) as complex integral around the unit circle
in the complex s-plane. Taking into account that the denominator of (A.12) can be factorized
s2 þ 2 cosh /sþ 1 ¼ ðsþ e/Þðsþ e�/Þ with zeros s1;2 ¼ �e�/ and s1s2 ¼ 1, we can evaluate (A.12) by uti-
lizing the residue theorem where we need only the zero within the unit circle jsj ¼ 1. Observing that only the
residue at s1 ¼ �e�/ (where we can choose / ¼ j/j) is located within the unit circle jsj ¼ 1 and therefore
contributes to (A.12), we obtain

�ggðr; tÞ ¼ cHðtÞ
2pr

Re
1

sinh /
ðA:13Þ

which is non-zero only if / is real, i.e. for ct=r > 1. Thus we arrive at

�ggðr; tÞ ¼ 1

2p

H t � r
c

� 	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r

c

� 	2
q ðA:14Þ

Expression (A.14) describes the physical propagation of an outgoing singular circular plane wave with
propagation velocity c. On a circle with radius r around the source point r ¼ 0 the wave arrives only when
t ¼ r=c. For t > r=c Green’s function �ggðr; tÞ is non-vanishing. For t < r=c the circular wave is not yet ar-
rived at the circle with radius r, therefore the Green’s function then is vanishing.

By utilizing (A.3) we obtain for �hh the expression

�hhðr; tÞ ¼
Hðt � r

cÞ
2p

t ln
ct
r

 (
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2

r2
� 1

r !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

c2

r )
ðA:15Þ

where �ggðr; tÞ ¼ ðd2=dt2Þ�hhðr; tÞ. In view of (30) and with (A.14) and (A.15) we can construct the Green’s
function (34) in the space time domain completely. Furthermore it is a small step to obtain Green’s function
(A.14) in the space frequency domain. To that end we have to determine �ggðr;xÞ which is defined by

�ggðr;xÞ ¼
Z 1

�1
eixt�ggðr; tÞdt ðA:16Þ

Inserting (A.14) into (A.16) leads to

�ggðr;xÞ ¼ 1

2p

Z 1

r
c

eixtdtffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

c2

q ðA:17Þ

which can be transformed by putting ct=r ¼ cosh / into

�ggðr;x þ i�Þ ¼ 1

2p

Z 1

0

ei
ðxþi�Þr

c cosh / d/ ðA:18Þ
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Furthermore, a definition of the Hankel function of the first kind is (Courant and Hilbert, 1968)

H 1
0 ðzÞ ¼

2

pi

Z 1

0

eiz cosh / d/ ðA:19Þ

Taking into account (A.19) we obtain for �ggðr;xÞ of (A.18) and by putting k0 ¼ ðx=cÞ þ i�

�ggðr;x þ i�Þ ¼ i

4
H 1

0 k0rð Þ ðA:20Þ

and taking into account definition of �hhðr; tÞ, Eq. (A.2) we observe

�hhðr;x þ i�Þ ¼ � �ggðr;x þ i�Þ
x2

¼ � i

4x2
H 1

0

ðx þ i�Þr
c

� �
ðA:21Þ

Expressions (A.20), (A.21) and (A.14), (A.15) represent the Green’s functions of Eqs. (A.1) and (A.2) in the
space frequency- and the causal ones in the space-time domain, respectively. From these results we obtain
by taking into account Fourier transform (30) Green’s function (34) itself and its causal space-time rep-
resentation of the components of the quasiplane dynamic Green’s function and arrive at

Gikðr; tÞ ¼
hik
C0

66

�gg2ðr; tÞ
�

þ 1

q0

o2

oxioxk
�hh1ðr; tÞ
h

� �hh2ðr; tÞ
i
þ mimk

C0
44

�gg3ðr; tÞ
�

ðA:22Þ

ciðr; tÞ ¼
e0

15

g0
11C

0
44

mi�gg3ðr; tÞ ðA:23Þ

gðr; tÞ ¼ dðtÞ
2pg0

11

ln r þ ðe0
15Þ

2

ðg0
11Þ

2C0
44

�gg3ðr; tÞ ðA:24Þ

where �ggi and �hhi denote functions of the form (A.14) and (A.15) with the wave velocities ci given by

c1 ¼

ffiffiffiffiffiffiffi
C0

11

q0

s
; c2 ¼

ffiffiffiffiffiffiffi
C0

66

q0

s
; c3 ¼

ffiffiffiffiffiffiffi
C0

44

q0

s
; C0

44 ¼ C0
44 þ

ðe0
15Þ

2

g0
11

ðA:25Þ

Appendix B

In order to develop the Green’s function defined in (39) we consider the integral of Eq. (41)

Gðr; a; k0Þ ¼
Z
S
�ggðr� r0; k0Þd2r0 ðB:1Þ

where k0 ¼ ðx=cÞ þ i�, r ¼ jrj and a denotes the radius of the circular inhomogeneity. gðr; k0Þ denotes the
dynamic Green’s function due to a point source defined by

ðD þ k2
0Þ�ggðr; k0Þ ¼ �d2ðrÞ ðB:2Þ

where D ¼ ðo2=ox2Þ þ ðo2=oy2Þ is the Laplace operator and k0 ¼ ðx=cÞ þ i�. The imaginary part � ! 0þ
again guarantees that the problem and all corresponding integrals become well defined. From Eq. (A.20) we
have

�ggðr; k0Þ ¼
i

4
H 1

0 ðk0rÞ ðB:3Þ
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G defined by (B.1) corresponds to the Green’s function of a circular source distribution represented by the
inhomogeneity S. Correspondingly we observe the property

ðD þ k2
0ÞGðr; a; k0Þ ¼

Z
S
ðD þ k2

0Þ�ggðr� r0; k0Þd2r0

¼ �
Z
S

d2ðr� r0Þd2r0

¼ � HSðrÞ
¼ � Hða� rÞ

ðB:4Þ

where HS is the characteristic function of the inhomogeneity expressed by the Heaviside step function
Hða� rÞ being 1 if r < a and 0 for r > a.

We can express via Fourier transformation integral (B.1) in the form

Gðr; a; k0Þ ¼
1

ð2pÞ2

Z
eikr

k2 � k2
0

d2k
Z
S

e�ikr0 d2r0 ðB:5Þ

leading to

Gðr; a; k0Þ ¼
a

2p

Z
eikr

k2 � k2
0

J1ðkaÞ
k

d2k ¼ a
Z 1

0

J0ðkrÞJ1ðkaÞ
k2 � k2

0

dk ðB:6Þ

It is convenient to derive this integral first in the k-t domain. With

gðk; tÞ ¼ 1

ð2pÞ

Z 1

�1

e�ixt

k2 � k2
0

dx ¼ cHðtÞ sinðcktÞ
k

ðB:7Þ

and by using �ð1=kÞðdJ0ðkaÞ=daÞ ¼ J1ðkaÞ together with

1

k2
¼
Z 1

0

e�kyy dy ðB:8Þ

we obtain

Gðr; a; tÞ ¼ �acHðtÞ d

da

Z 1

0

J0ðkrÞJ0ðkaÞ
sinðcktÞ
k2

dk

¼ � caHðtÞ
ð2pÞ2

d

da

Z 2p

0

Z 2p

0

du1du2Im

Z 1

0

y dy
Z 1

0

e�kðy�iðctþr cos u1þa cos u2þi�ÞÞ dk

¼ � caHðtÞ
ð2pÞ2

d

da

Z 2p

0

Z 2p

0

du1du2 Im

Z 1

0

y dy

ðy � iðct þ r cos u1 þ a cos u2 þ i�ÞÞ

¼ caHðtÞ
ð2pÞ2

d

da
Re

Z 2p

0

Z 2p

0

du1du2ðct þ r cos u1 þ a cos u2Þ lnðct þ r cos u1 þ a cos u2 þ i�Þ

¼ caHðtÞ
ð2pÞ2

Re

Z 2p

0

Z 2p

0

du1du2 cos u2 lnðct þ r cos u1 þ a cos u2 þ i�Þ ðB:9Þ

where all expressions are considered in the limiting case � ! 0þ. The last relation is a very compact for-
mulation of (B.1) in the r–t-domain. Remember that this integral can also be represented by

Gðr; a; tÞ ¼
Z
S
�ggðjr� r0j; tÞd2r0 ðB:10Þ
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where �ggðr; tÞ is given in (A.14). Corresponding to (B.4) Gðr; a; tÞ fulfills the equation

1

c2

d2

dt2

�
� D

�
Gðr; a; tÞ ¼ HsðrÞdðtÞ ¼ Hða� rÞdðtÞ ðB:11Þ

For evaluation of (B.1) we first consider (B.9)

Gðr; a; tÞ ¼ caHðtÞ
ð2pÞ2

Z 2p

0

Gðr; a; t;uÞdu ðB:12Þ

We now have to distinguish two cases, namely r < a and r > a.

Case I: r < a, the spacepoint r is located inside the inhomogeneity.
Then we have to consider an integral of the form

Gðr; a; t;uÞ ¼ Re

Z 2p

0

cos a lnðcos a þ Aðu; r; t; aÞÞda ðB:13Þ

where we put A ¼ ðr=aÞ cos u þ ðct=aÞ þ i�. We have to distinguish A ¼ cosh /ðu; r; t; aÞ > 1, (i.e. / real,
then we may put � ¼ 0) and jAj < 1, i.e. / ¼ iðw � idÞ thus A ¼ cosðw � idÞ, where d ! 0þ is an infini-
tesimal real constant which is needed for regularization of integral (B.13) to be well defined. It is important
to note that for jAj < 1, we have to take the real part of (B.13). To evaluate (B.13) it is convenient to expand
the logarithm in the following series 11

lnðcos a þ cosh /Þ cos a ¼ 1

2
ðeia þ e�iaÞ ln

e/

2

�
þ lnð1 þ e�/eiaÞ þ lnð1 þ e�/e�iaÞ

�
¼ 1

2
ðeia þ e�iaÞ ln

e/

2

"
þ
X1
n¼1

ð�1Þn�1
e�n/

n
ðeina þ e�inaÞ

# ðB:14Þ

Only the terms of zero order in eia contribute to (B.13), namely

Gðr; a; t;uÞ ¼ 2pRe e�/ðr;a;t;uÞ) *
¼ 2pe�/ðr;a;t;uÞ ¼ 2p A

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2 � 1Þ

p �
; if A ¼ cosh / > 1ð/ > 0Þ

¼ 2pRe e�iwðr;a;t;uÞ) *
¼ 2p cos w ¼ 2pA; if A ¼ cos w; / ¼ iðw � idÞ

ðB:15Þ

where for A ¼ 1 both equations coincide and yield G ¼ 2p. If jAj < 1 integral (B.12) or equivalently (B.10)
and (B.9) assumes the form

Gðr; a; tÞ ¼ caHðtÞ
ð2pÞ

Z 2p

0

r
a

cos u
�

þ ct
a

�
du

Gðr; a; tÞ ¼ c2tHðtÞ; if t < ða� rÞ=c; ðr < aÞ
ðB:16Þ

In view of (B.9) and (B.10) the result (B.16) is worth while to observe: For 0 < t < ða� rÞ=c integral
(B.9) or equivalently (B.10) depends linearly on time, (i.e. when jAj < 1 for all u). Physically the result
(B.16) can be interpreted as the superposition effect of waves arriving at r emitted at t ¼ 0 by point sources
aligned on circles with increasing radii ct around r. This superposition effect continues until the ‘‘first’’ wave
from the boundary of the circle arrives at tc ¼ ða� rÞ=c. For times larger than tc, Eq. (B.16) no longer

11 Without loss of generality we can choose Re/ > 0 to guarantee that the following series is convergent. For jAj < 1 this is

especially ensured by introducing the regularization parameter d ! 0þ.
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holds. Since for t < ða� rÞ=c no waves from the boundary arrive at r, it is to be expected that (B.16) is
independent from radius a and of r, since this effect occurs for all space points r in the same way for r < a.
This situation changes only for t > ða� rÞ=c, since then superposition of waves emitted from different
boundary points occurs at space point r.

Now it is only a small step to derive by using (B.15) and (B.16) integral (B.1) for r < a in the r–x-
domain. To that end we have to calculate

Gðr; a; k0Þ ¼
Z 1

�1
Gðr; a; tÞeixt dt

¼ c2

Z 1

0

e�ð��ixÞttHðtÞdt � a2

2p

Z 2p

0

Z 1

0

eiðxþi�Þðac cosh /�r
c cos uÞ sinh2 /d/du

ðB:17Þ

where cosh / ¼ ct
a þ r

a cos u. Integrals (B.17) yield

Gðr; a; k0Þ ¼ � 1

k2
0

� a2J0ðk0rÞ
Z 1

0

eik0a cosh / sinh2 /d/ ðB:18Þ

Take now into account the definition of Hankel functions (Courant and Hilbert, 1968)

H 1
n ðk0aÞ ¼

e�inp
2

pi

Z 1

0

eik0a cosh /ðen/ þ e�n/Þd/ ðB:19Þ

especially

H 1
1 ðk0aÞ ¼ � 2

p

Z 1

0

eik0a cosh / cosh /d/ ðB:20Þ

after partial integration (and by using that k0 has an infinitesimal imaginary part) we can transform this
integral into

H 1
1 ðk0aÞ ¼

2ik0a
p

Z 1

0

eik0a cosh / sinh2 /d/ ðB:21Þ

which is an integral of the type occurring in (B.18), thus we obtain for (B.18) our final result of Eq. (46)

Gðr; a; k0Þ ¼
1

k2
0

ip
2
k0aJ0ðk0rÞH 1

1 ðk0aÞ
�

� 1

�
ðB:22Þ

which holds for r < a, that is r is located inside the circular inhomogeneity. We note that it is easily checked
that (B.22) indeed fullfills (B.4) for r < a.

For the sake of completeness we calculate now (B.1) also for r > a:

Case II: r > a, the space point r is located outside the inhomogeneity.
It is now convenient to write (B.12) in the form

Gðr; a; tÞ ¼ caHðtÞ
ð2pÞ2

Z 2p

0

Gðr; a; t;uÞ cos udu ðB:23Þ

Gðr; a; t;uÞ ¼ Re

Z 2p

0

lnðcos a þ Aðu; r; t; aÞÞda ðB:24Þ

Note that the cosine cofactor is now integrated in the first of both equations, namely already in (B.23). Now
we have put A ¼ cosh /ðu; r; t; aÞ ¼ ða=rÞ cos u þ ðct=rÞ þ i�. With the same variable substitutions as in
(B.15) and expansion (B.14), integral (B.24) yields
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Gðr; a; t;uÞ ¼ 2pRe ln
e/

2

� �� �
¼ 2pð/ðr; a; t;uÞ � ln 2Þ; if A > 1; ð/ > 0Þ

¼ 2pRe ln
eiW

2

� �� �
¼ 2pRefiw � ln 2g ¼ �2p ln 2; if / ¼ iðw � idÞ

ðB:25Þ

We see that in the last case (B.25, third term), because then G is a u-independent constant, integral (B.23) is
vanishing. Vanishing of (B.23) means physically nothing but the runtime effect described above: Integral
(B.10) is vanishing if A ¼ ða=rÞ cos u þ ðct=rÞ < 1 and this is fulfilled for all u if t < ðr � aÞ=c. Thus we can
state

Gðr; a; tÞ ¼ 0; if t <
ðr � aÞ
c

; r > a ðB:26Þ

This relation is fulfilled as t < ðr � aÞ=c which is the runtime of the wave emitted from the closest boundary
point of the inhomogeneity to r which has the distance r � a. By using (B.24) we obtain for (B.23) for
arbitrary t the integral

Gðr; a; tÞ ¼ ca
2p

Re

Z 2p

0

/ðr; a; t;uÞ cos udu ðB:27Þ

with cosh / ¼ A ¼ ða=rÞ cos u þ ðct=rÞ. The real part implicates that (B.27) is only non-vanishing if / > 0
or equivalently if A > 1. From here it is now a small step to derive (B.1) also for r > a:

We only have to evaluate

Gðr; a; k0Þ ¼
ca
2p

Z 2p

0

du cos u
Z 1

�1
eiðxþi�ÞtRef/ðr; a; t;uÞgdt ðB:28Þ

Because of cosh / ¼ A ¼ ða=rÞ cos u þ ðct=rÞ we have t ¼ ðr=cÞ cosh / � ða=cÞ cos u and sinh /d/ ¼
ðc=rÞdt, integral (B.28) assumes the form

Gðr; a; k0Þ ¼
ar
2p

Z 2p

0

du cos ue�iacðxþi�Þ cos u

Z 1

0

/eiðxþi�Þrc cosh / sinh /d/ ðB:29Þ

where k0 ¼ ðx þ i�Þ=c. Take now in account that

1

2p

Z 2p

0

du cos ue�iak0 cos u ¼ � 1

2p

Z 2p

0

du sin ueik0a sin u ¼ �iJ1ðk0aÞ ðB:30Þ

and Z 1

0

/eik0r cosh / sinh /d/ ¼ /
1

ik0r
eik0r cosh /j10 � 1

ik0

Z 1

0

eik0r cosh /d/

¼ i

k0r

Z 1

0

eik0r cosh /d/ ¼ � p
2k0r

H 1
0 ðk0rÞ

ðB:31Þ

where the first term in (B.31, first term) vanishes because of the infinitesimal term i� in its exponent. Using
(B.30) and (B.31), expression (B.29) finally yields for r > a, i.e. r outside the inhomogeneity

5046 V.M. Levin et al. / International Journal of Solids and Structures 39 (2002) 5013–5051



Gðr; a; k0Þ ¼ a
J1ðk0aÞ
k0

pi

2
H 1

0 ðk0rÞ

¼ 2pa
J1ðk0aÞ
k0

i

4
H 1

0 ðk0rÞ

¼ F ða; k0Þ�ggðr; k0Þ

ðB:32Þ

where �ggðr; k0Þ ¼ ði=4ÞH 1
0 ðk0rÞ is the Green’s function (B.3) with the Fourier transform F ða; k0Þ at k ¼ k0 of

the characteristic function of the inhomogeneity

F ða; k0Þ ¼ 2pa
J1ðk0aÞ
k0

¼
Z
S

eik0nðuÞ�r0d2r0 ðB:33Þ

Note that F ða; k0Þ tends to pa2 when a! 0, then Gðr; a; k0Þ=pa2 of Eq. (B.32) corresponds to the Green’s
function of a point source at r ¼ 0 (A.20) as it was to be expected. At this result the required property (B.4)
is immediately checked: Because of

ðD þ k2
0Þgðr; k0Þ ¼ �d2ðrÞ ðB:34Þ

we obtain from (B.32)

ðD þ k2
0ÞGðr; a; k0Þ ¼ F ða; k0ÞðD þ k2

0Þgðr; k0Þ
¼ � F ða; k0Þd2ðrÞ ¼ 0; since r > a

ðB:35Þ

which corresponds to the required relation (B.4) for r > a, that is, r is located outside the inhomogeneity.
Expressions (B.22) and (B.32) represent the closed form solution of the Green’s function (B.1) defined by

Eq. (B.4) corresponding to a source distribution which is represented by a circular inhomogeneity.

Appendix C

Here we derive integral (40) which has the form

Iðr; aÞ ¼
Z
SðaÞ

d2r0 ln jr� r0j ðC:1Þ

and is performed over a circular inhomogeneity with radius a. Let us first transform Iðr; aÞ into an integral
over the boundary of the circle. To this end we put g ¼ ln jr� r0j and f ¼ 1

4
jr� r0j2.

Then we have

gDr0f � fDr0g ¼ r0ðgr0f � fr0gÞ ¼ ln jr� r0j ðC:2Þ
Inserting this expression instead of ln jr� r0j into integral (C.1) yields

Iðr; aÞ ¼ 1

4

Z
oSðaÞ

2 ln jrf � anðuÞj � 1gfanðuÞ � rgnðuÞdOðuÞ ðC:3Þ

where n denotes the outer normal of the circle oSðaÞ. We can write for this integral the expression
dOðuÞ ¼ adu

Iðr; aÞ ¼ a
4

Z 2p

0

du að � r cos uÞ lnða2
�

þ r2 � 2ar cos uÞ � 1
	

ðC:4Þ

or

Iðr; aÞ ¼ � pa2

2
þ a

4

Z 2p

0

duða� r cos uÞ lnða2 þ r2 � 2ar cos uÞ ¼ � pa2

2
þ a

4
Iðr; aÞ ðC:5Þ
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We now evaluate the remaining integral Iðr; aÞ with the help of the residue theorem. To that end let us
consider the expression

r2 þ a2 � 2ar cos u ¼ a2 1
�

� r
a

eiu
�

1
�

� r
a

e�iu
�

ðC:6Þ

thus

ln a2
�

þ r2 � 2ar cos u
	
¼ 2 ln aþ ln 1

�
� r
a

eiu
�
þ ln 1

�
� r
a

e�iu
�

ðC:7Þ

and expand the logarithm for jxj < 1 into a convergent series corresponding to

lnð1 � xÞ ¼ �
X1
n¼1

xn

n
ðC:8Þ

thus we can write for r < a the expansion

lnðr2 þ a2 � 2ar cos uÞ ¼ 2 ln a�
X1
n¼1

1

n
r
a

� �n
eniu
�

þ e�niu
	

ðC:9Þ

and

a� r cos u ¼ a
2

2
�

� r
a

eiu
�

þ e�iu
	�

ðC:10Þ

Now introduce the complex variable s ¼ eiu and transform Iðr; aÞ into an integral over the unit circle
jsj ¼ 1 and take into account that du ¼ ds=is. To evaluate Iðr; aÞ we have to determine the residue of the
integrand, that is we have to collect all terms containing s�1 of the expression

a
2i

2

s

�
� r
a

1

�
þ 1

s2

��
2 ln a
�

� r
a

s
�

þ 1

s

��
� 1

2

r2

a2
s2

��
þ 1

s2

�
þ � � �

�
ðC:11Þ

and obtain by applying the residue theorem

Iðr; aÞ ¼ 2pi
X

Res ¼ 2pa 2 ln a
�

þ r2

a2

�
ðC:12Þ

Thus we obtain for (C.4)

Iðr; aÞ ¼ p
2

2a2 lnðaÞ
�

� a2 þ r2
	

ðC:13Þ

which holds for r < a, that is the space point r is located inside the inhomogeneity and corresponds to (40).
For the sake of completeness we give (40) also for the remaining case r > a. The same choice of variables

and a corresponding expansion now with respect to a=r of (C.1) finally yields

Iðr; aÞ ¼ pa2 lnðrÞ ðC:14Þ

for r > a, that is r is located outside the inhomogeneity. In view of (C.13) and (C.14) we observe fur-
thermore the necessary condition

DrIðr; aÞ ¼ 2pHða� rÞ ðC:15Þ

which obviously fulfills (40) when we take into account that Dr lnðjr� r0jÞ ¼ 2pd2ðr� r0Þ. Note that ex-
pressions (C.13) and (C.14) correspond to the static Green’s function defined by Eq. (C.15) due to a source
distribution represented by a circular inhomogeneity.

5048 V.M. Levin et al. / International Journal of Solids and Structures 39 (2002) 5013–5051



Appendix D

Here we give a derivation of the used farfield asymptotics of Eq. (95) based on the method of stationary
points. To that end let us consider the integral

F ðkÞ ¼
Z b

a
f ðxÞ expfikSðxÞgdx ðD:1Þ

where we consider the case of large (positive) argument k � 1. To that end we assume that SðxÞ has within
½a; b� at a < x0 < b a stationary point Sðx0Þ where ðd=dxÞSðx0Þ ¼ S0ðx0Þ ¼ 0 and ðd2=dx2ÞSðx0Þ ¼ S00ðx0Þ 6¼ 0.
We furthermore assume that f ðxÞ can be expanded into a Taylor series around x0 that is convergent for
a6 x6 b according to

f ðxÞ ¼ f ðx0Þ þ f 0ðx0Þðx� x0Þ þ
1

2!
f 00ðx0Þðx� x0Þ2 þ � � � ðD:2Þ

and according to our assumptions the series of SðxÞ has the form

SðxÞ ¼ Sðx0Þ þ
1

2!
S00ðx0Þðx� x0Þ2 þ � � � ðD:3Þ

To evaluate F ðkÞ from (D.1) it is convenient to introduce the new variable u ¼ kðx� x0Þ. Thus (D.1) can be
written as

F ðkÞ ¼
Z kðb�x0Þ

kða�x0Þ
f ðx0Þ
�

þ f 0ðx0Þ
u
k
þ 1

2!
f 00ðx0Þ

u2

k2
þ � � �

�
exp i kSðx0Þ

�
þ u2

2k
S00ðx0Þ þ � � �

�
du
k

ðD:4Þ

We now consider the limiting case k � 1. Then the integration limits of (D.4) tend to �1, respectively and
we have

F ðkÞ ¼ exp ifkSðx0Þg
k

Z þ1

�1
f ðx0Þ
�

þ f 0ðx0Þ
u
k
þ 1

2!
f 00ðx0Þ

u2

k2
þ � � �

�
exp i

u2

2k
S00ðx0Þ

�
þ � � �

�
du ðD:5Þ

The integral containing the linear term f 0ðx0Þðu=kÞ vanishes, since u is an odd function whereas the ex-
ponential is an even function of u (at least when k tends to infinity where the higher powers as u2=k2 can be
neglected). Thus we have as dominant terms in (D.5) the expressions

F ðkÞ ¼ exp ifkSðx0Þg
k

f ðx0Þ
Z þ1

�1
exp i

u2

2k
S00ðx0Þ

� �
du

�
þ 1

2k2
f 00ðx0Þ

Z þ1

�1
exp i

u2

2k
S00ðx0Þ

� �
u2 du

�
ðD:6Þ

To evaluate (D.6) we have to evaluate integrals of the form (a ¼ S00ðx0Þ=ð2kÞ)

IðaÞ ¼
Z 1

�1
expfiau2gdu ðD:7Þ

and

JðaÞ ¼
Z 1

�1
u2 expfiau2gdu ðD:8Þ

where we observe that JðaÞ ¼ ð1=iÞðd=daÞIðaÞ. Despite IðaÞ looks trivial we carefully evaluate it here
(because of its complex argument). Consider therefore I2ðaÞ after performing the u-integration

I2ðaÞ ¼ 2p
Z 1

0

u exp iau2
) *

du ðD:9Þ
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which can be transformed into with v ¼ u2

I2ðaÞ ¼ lim
�!0

p
Z 1

0

exp f � ð�� iaÞvgdv ðD:10Þ

where we have introduced an infinitesimal positive parameter � ! 0þ to define this integral and arrive at

I2ðaÞ ¼ lim
�!0

p
ð�� iaÞ ¼ p2dðaÞ þ ip

a
ðD:11Þ

because of a ¼ S00ðx0Þ=ð2kÞ 6¼ 0 we can omit the d function and furthermore use that a ¼ jajsignðaÞ, thus

I2ðaÞ ¼ i signðaÞp
jaj ðD:12Þ

and

IðaÞ ¼ exp i signðaÞp
4

n o ffiffiffiffiffiffi
p
jaj

r
¼

ffiffiffiffi
ip
a

r
ðD:13Þ

and JðaÞ ¼ ð1=iÞðd=daÞIðaÞ from (D.8) is then obtained by

JðaÞ ¼ i

2
exp i signðaÞ p

4

n o ffiffiffiffiffiffiffi
p

jaj3
r

¼ �1

2i

ffiffiffiffiffi
ip
a3

r
ðD:14Þ

and we have from (Eq. (D.5))

F ðkÞ ¼ exp ifkSðx0Þg
k

f ðx0ÞIðaÞ
�

þ 1

2k2
f 00ðx0ÞJðaÞ

�
ðD:15Þ

to arrive at by using (D.13) and (D.14) with signðaÞ ¼ sign½S00ðx0Þ�

F ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p
kjS00ðx0Þj

s
exp i kSðx0Þ

n
þ p

4
sign½S00ðx0Þ�

o
f ðx0Þ

�
þ if 00ðx0Þ

2kjS00ðx0Þj

�
ðD:16Þ

In the case when SðxÞ has m stationary points xm (m ¼ 1; . . . ;m) with a < xm < b we obtain instead of (D.16)

F ðkÞ ¼
Xm
m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

kjS00ðxmÞj

s
exp i kSðxmÞ

n
þ p

4
sign½S00ðxmÞ�

o
f ðxmÞ

�
þ if 00ðxmÞ

2kjS00ðxmÞj

�
ðD:17Þ

corresponding to Eq. (95).
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